首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
—An inverse relationship was demonstrable between the concentration of pyridoxal phosphate and the activity of pyridoxal kinase in rabbit brain. The administration of pyridoxine elevated the concentration of pyridoxal phosphate and decreased the activity of pyridoxal kinase. Conversely, the administration of deoxypyridoxine decreased the concentration of pyridoxal phosphate and increased the activity of pyridoxal kinase. The increase in the activity of pyridoxal kinase by deoxypyridoxine was blocked by actinomycin D or puromycin. These results were interpreted to indicate that the tissue availability of pyridoxal phosphate regulated the activity of pyridoxal kinase.  相似文献   

2.
The activity and the distribution of pyridoxal kinase in rat and mouse tissues are studied. The data obtained testify the presence of a relative excess of pyridoxal kinase in all the organs studied, which probably causes a high rate of pyridoxalphosphate (PLP) biosynthesis under comparatively low vitamin B6 concentration. A correlation between the level of pyridoxal kinase activity and the content of PLP in rat brain and liver during ontogenesis is observed. The activity of pyridoxal kinase and the content of PLP are shown to be sharply increased in liver of rats received a protein-rich diet. Bilateral adrenalectomy resulted in the decrease of absolute and specific enzyme activities in rat liver by 20--30%. The content of PLP in mouse brain and liver was sharply decreased under experimental B6-avitaminosis while the content of pyridoxal kinase practically did not change. The injection of vitamin B6 rapidly normalized the PLP content in mouse tissues. The data obtained show that under physiological conditions the functional activity of pyridoxal kinase may be regulated in tissues by enzyme and substate contents. Some aspects of vitamin B6 metabolism in mammals are considered. It is concluded that in body the pyridoxal catabolism connected with its phosphorylation by pyridoxal kinase and the formation of pyridoxalphosphate.  相似文献   

3.
Inhibition of pyridoxal kinase by methylxanthines   总被引:2,自引:0,他引:2  
In the presence of saturating concentrations of adenosine triphosphate (ATP) and rate-limiting amounts of pyridoxal, theophylline was found to inhibit sheep brain pyridoxal kinase (EC 2.7.1.35) competitively. The apparent inhibition constant (Ki) of theophylline for pyridoxal kinase was determined as 8.7 mumol/l. Theophylline concentrations of up to 60 mumol/l did not affect pyridoxal phosphorylation in the presence of saturating amounts of pyridoxal and rate-limiting concentrations of ATP. Caffeine was less potent to inhibit pyridoxal kinase (Ki = 45 mumol/l) due to the presence of a methyl group on the 7 position of the xanthine ring structure. Theobromine showed only a weak inhibition of pyridoxal kinase (Ki = 453 mumol/l). The presence of a hydroxyethyl, hydroxypropyl or dihydroxypropyl group on the N7 position of theophylline completely abolished inhibition of pyridoxal kinase. Enprofylline (3-propylxanthine), a recently described bronchodilator, was also able to inhibit pyridoxal kinase with a Ki of 256 mumol/l.  相似文献   

4.
In the absence of any known studies dealing with status of vitamin B6 metabolism in mammalian retinas, the concentration of pyridoxal phosphate and the activity of its synthesizing enzyme pyridoxal kinase were determined in rat retina and bovine retina and its subcellular compartments. In bovine retina, the highest concentration of pyridoxal phosphate (148 pmol/mg protein) was present in pellet 2 fraction containing synaptosomes comparable to those isolated from brain. The second highest concentration of pyridoxal phosphate (91 pmol/mg protein) was present in pellet 1 fraction containing large synaptosomes resembling photoreceptor cell terminals. The concentrations of pyridoxal phosphate in pellets 1 and 2 fractions were approx 3- to 6-fold higher than that found in the whole retina. The concentration of pyridoxal phosphate and the activity of pyridoxal kinase in the rat retina were considerably higher than those observed in the bovine retina. In general, no apparent correlation existed between the concentrations of pyridoxal phosphate and the activities of pyridoxal kinase in bovine retina and its subcellular compartments.  相似文献   

5.
The pdxK and pdxY genes have been found to code for pyridoxal kinases, enzymes involved in the pyridoxal phosphate salvage pathway. Two pyridoxal kinase structures have recently been published, including Escherichia coli pyridoxal kinase 2 (ePL kinase 2) and sheep pyridoxal kinase, products of the pdxY and pdxK genes, respectively. We now report the crystal structure of E. coli pyridoxal kinase 1 (ePL kinase 1), encoded by a pdxK gene, and an isoform of ePL kinase 2. The structures were determined in the unliganded and binary complexes with either MgATP or pyridoxal to 2.1-, 2.6-, and 3.2-A resolutions, respectively. The active site of ePL kinase 1 does not show significant conformational change upon binding of either pyridoxal or MgATP. Like sheep PL kinase, ePL kinase 1 exhibits a sequential random mechanism. Unlike sheep pyridoxal kinase, ePL kinase 1 may not tolerate wide variation in the size and chemical nature of the 4' substituent on the substrate. This is the result of differences in a key residue at position 59 on a loop (loop II) that partially forms the active site. Residue 59, which is His in ePL kinase 1, interacts with the formyl group at C-4' of pyridoxal and may also determine if residues from another loop (loop I) can fill the active site in the absence of the substrate. Both loop I and loop II are suggested to play significant roles in the functions of PL kinases.  相似文献   

6.
The gene (pykA) encoding pyridoxal kinase which converts pyridoxal (vitamin B(6)) to pyridoxal phosphate was isolated from Dictyostelium discoideum using insertional mutagenesis. Cells of a pykA gene knockout grew poorly in axenic medium with low yield but growth was restored by the addition of pyridoxal phosphate. Sequencing indicated a gene, with one intron, encoding a predicted protein of 301 amino acids that was 42% identical in amino acid sequence to human pyridoxal kinase. After expression of the wild-type gene in Escherichia coli, the purified PykA protein product was shown to have pyridoxal kinase enzymatic activity with a K(m) of 8.7 microM for pyridoxal. Transformation of the Dictyostelium knockout mutant with the human pyridoxal kinase gene gave almost the same level of complementation as that seen using transformation with the wild-type Dictyostelium gene. Phylogenetic analysis indicated that the Dictyostelium amino acid sequence was closer to human pyridoxal kinase than to pyridoxal kinases of lower eukaryotes.  相似文献   

7.
Abstract— DOPA, dopamine, norepinephrine, tyramine, serotonin, histamine and GABA inhibited pyridoxal kinase; whereas, tyrosine, 5-hydroxytryptophan, histidine, glutamic acid, hypotaurine and taurine were without inhibitory effects. Tetrahydroisoquinoline derivatives formed from Pictet-Spengler condensation between DOPA, dopamine and norepinephrine with pyridoxal and pyridoxal phosphate did not inhibit pyridoxal kinase. These results are interpreted to indicate that interaction of biogenic amines and pyridoxal kinase may alter the formation of pyridoxal phosphate which in turn may influence the activity of numerous pyridoxal phosphate dependent enzymatic reactions in brain.  相似文献   

8.
Analogues of pyridoxal and of pyridoxal phosphate in which the 4-CHO group is replaced with CH = CH2 were synthesized and were found to be potent inhibitors of pyridoxal kinase and pyridoxine phosphate oxidase of rat liver. They also inhibited the growth of mouse Sarcoma 180 and mammary adenocarcinoma TA3 in cell culture. Saturation of the vinyl double bond, replacement of the 5-CH2OH with methyl, methylation of the phenolic hydroxyl, or conversion to the N-oxide resulted in diminution or loss of all these activities. Similarly, the introduction of a beta-methyl group into the vinyl analogues of pyridoxal reduced all these inhibitory activities. The 4-vinyl anatogue of pyridoxal was shown to be a substrate of pyridoxal kinase and the product a potent inhibitor of pyridoxine oxidase, competing with pyridoxal phosphate. The affinity of this phosphorylated pyridoxal analogue to some apoenzymes varied greatly, indicating striking differences among the cofactor binding sites of these enzymes. The growth inhibitory effects of these analogues on cells in culture correlated well with their effects on pyridoxal kinase and pyridoxine phosphate oxidase in cell-free systems.  相似文献   

9.
Pyridoxal kinase is an ATP dependent enzyme that phosphorylates pyridoxal, pyridoxine, and pyridoxamine forming their respective 5'-phosphorylated esters. The kinase is a part of the salvage pathway for re-utilizing pyridoxal 5'-phosphate, which serves as a coenzyme for dozens of enzymes involved in amino acid and sugar metabolism. Clones of two pyridoxal kinases from Escherichia coli and one from human were inserted into a pET 22b plasmid and expressed in E. coli. All three enzymes were purified to near homogeneity and kinetic constants were determined for the three vitamin substrates. Previous studies had suggested that ZnATP was the preferred trinucleotide substrate, but our studies show that under physiological conditions MgATP is the preferred substrate. One of the two E. coli kinases has very low activity for pyridoxal, pyridoxine, and pyridoxamine. We conclude that in vivo this kinase may have an alternate substrate involved in another metabolic pathway and that pyridoxal has only a poor secondary activity for this kinase.  相似文献   

10.
Quinoline derivatives such as chloroquine and primaquine are widely used for the treatment of malaria. These drugs are also used for the treatment of trypanosomiasis, and more recently for cancer therapy. However, molecular target(s) of these drugs remain unclear. In this study, we have identified human pyridoxal kinase as a binding protein of primaquine. Primaquine inhibited pyridoxal kinases of malaria, trypanosome and human, while chloroquine inhibited only malaria pyridoxal kinase. Thus, we have identified pyridoxal kinase as a possible target molecule of the antimalarial drugs chloroquine and primaquine.  相似文献   

11.
Pyridoxal kinase catalyses the phosphorylation of the vitamin B6. A human brain pyridoxal kinase cDNA was isolated, and the recombinant enzyme was overexpressed in E. coli as a fusion protein with maltose binding protein (MBP). Pure pyridoxal kinase exhibits a molecular mass of about 40 kDa when examined by SDS-PAGE and FPLC gel filtration. The recombinant enzyme is a monomer endowed with catalytic activity, indicating that the native quaternary structure of pyridoxal kinase is not a prerequisite for catalytic function. Zn2+ is the most effective divalent cation in the phosphorylation of pyridoxal, and the human enzyme has maximum catalytic activity in the narrow pH range of 5.5-6.0. The Km values for two substrates pyridoxal and ATP are 97 microM and 12 microM, respectively. In addition, the unfolding processes of the recombinant enzyme were monitored by circular dichroism. The values of the free energy change of unfolding (AGo = 1.2 kcal x mol(-1) x K(-1)) and the midpoint transition (1 M) suggested that the enzyme is more stable than ovine pyridoxal kinase against denaturation by guanidine hydrochloride. Intrinsic fluorescence spectra of the human enzyme from red-edge excitation and fluorescence quenching experiments showed that the tryptophanyl residues are not completely exposed and more accessible to neutral acrylamide than to the negatively charged iodide. The first complete set of catalytic and structural properties of human pyridoxal kinase provide valuable information for further biochemical studies on this enzyme.  相似文献   

12.
The effects of changes in the concentrations of pyridoxal phosphate and blogenic amines in brain on: (I) pyridoxal kinase (EC 2.7.1.35) activity in brain and choroid plexus; and (2) vitamin B6 accumulation by brain slices and isolated, intact choroid plexuses were studied. New Zealand white rabbits were treated parenterally with 200 mg/kg pyridoxine-HCl for 3 days or 120 mg/kg 4-deoxypyridoxine HCI or 5 mg/kg reserpine I day before death. After these treatments the mean concentration of pyridoxal phosphate in brain was elevated by 39% by pyridoxine and decreased by 57% by 4-deoxypyridoxine. Reserpine had no effect. However, the ability of brain slices and isolated, intact choroid plexuses from the treated rabbits to accumulate [3H] vitamin B6 (with [3H]pyridoxine in the medium) was not different from untreated controls. Also, the specific activity of pyridoxal kinase in brain and choroid plexus of treated rabbits was not different from controls. These results show that vitamin B6 accumulation and pyridoxal kinase activity in brain and choroid plexus are independent of both pyridoxal phosphate and reserpine-sensitive biogenic amine concentrations in brain. In vitro studies with pyridoxal kinase showed that. in both choroid plexus and brain. pyridoxal kinase was a single enzyme with a molecular weight of 43.000 and a Km , for pyridoxine of 2.0 μM Crude and partially-purified pyridoxal kinase from brain was not inhibited by biogenic amines (1 mM) or pyridoxal phosphate (5 μM). These in vitro data are consistent with the lack of effect of changes in pyridoxal phosphate and biogenic amine concentrations (in brain) on pyridoxal kinase activity in brain in vivo.  相似文献   

13.
Physical interactions between pyridoxal kinase and aspartate aminotransferase were detected by means of emission anisotropy and affinity chromatography techniques. Binding of aspartate aminotransferase (apoenzymes) to pyridoxal kinase tagged with a fluorescent probe was detected by emission anisotropy measurements at pH 6.8 (150 mM KCl). Upon saturation of the kinase with the aminotransferase, the emission anisotropy increases 22%. The protein complex is characterized by a dissociation constant of 3 microM. Time-dependent emission anisotropy measurements conducted with the mixture 5-naphthylamine-1-sulfonic acid-kinase aspartate aminotransferase (apoenzyme), revealed the presence of two rotational correlation times of phi 1 = 36 and phi 2 = 62 ns. The longer correlation time is attributed to the stable protein complex. By immobilizing one enzyme (pyridoxal kinase) through interactions with pyridoxal-Sepharose, it was possible to demonstrate that aspartate aminotransferase releases pyridoxal kinase. A test of compartmentation of pyridoxal-5-phosphate within the protein complex using alkaline phosphatase as trapping agent, indicates that the cofactor generated by the catalytic action of the kinase is channeled to the apotransaminase. The main function of the stable complex formed by the kinase and the aminotransferase is to hinder the release of free pyridoxal-5-phosphate into the bulk solvent.  相似文献   

14.
Pyridoxal kinase has been purified 2000-fold from pig brain. The enzyme preparation migrates as a single protein and activity band on analytical gel electrophoresis. The interactions of the substrate pyridoxal and the inhibitor N-dansyl-2-oxopyrrolidine (dansyl = 5-dimethylaminonaphthalene-1-sulfonyl) with the catalytic site were examined by means of fluorescence spectroscopy. The increase in emission anisotropy that follows the binding of pyridoxal to the kinase was used to determine the equilibrium dissociation constant. Pyridoxal kinase binds one molecule of substrate with a Kd = 11 microns at pH 6. The emission anisotropy spectrum of bound pyridoxal reveals that the substrate is not rigidly trapped by the protein matrix. N-Dansyl-2-oxopyrrolidine is a competitive inhibitor with respect to ATP at saturating concentrations of pyridoxal. It binds to the enzyme with a dissociation constant of 6 microns. N-Dansyl-2-oxopyrrolidine is immobilized by strong interactions with the enzyme, but it is displaced from the catalytic site by ATP. The results are consistent with the hypothesis that N-dansyl-2-oxopyrrolidine binds at the nucleotide binding site of pyridoxal kinase.  相似文献   

15.
Six monoclonal antibodies that recognize porcine brain pyridoxal kinase have been selected and designated as PK67, PK86, PK91, PK144, PK252 and PK275. A total of six monoclonal antibodies recognizing different epitopes of the enzyme were obtained, of which four inhibited the enzyme activity. When total proteins of porcine brain homogenate separated by SDS-PAGE were subjected to monoclonal antibodies, a single reactive protein band of molecular weight 39 kDa which comigrated with purified porcine pyridoxal kinase was detected. Using the anti-pyridoxal kinase antibodies as probes, the cross reactivities of brain pyridoxal kinase from human and other mammalian tissues and from avian sources were also investigated. Among human and all animal tissues tested, immunoreactive bands on Western blots appeared to have the same molecular mass of 39 kDa. These results indicate that mammalian brains contain only one major type of immunologically similar pyridoxal kinase, although some properties of the enzymes reported previously differed from one another.  相似文献   

16.
M Tagaya  K Yamano  T Fukui 《Biochemistry》1989,28(11):4670-4675
Pyridoxal kinase from pig liver has been purified 10,000-fold to apparent homogeneity. The enzyme is a dimer of subunits of Mr 32,000. The enzyme is strongly inhibited by the product pyridoxal 5'-phosphate. Liver pyridoxamine phosphate oxidase, another enzyme involved in the biosynthesis of pyridoxal 5'-phosphate, is also strongly inhibited by this compound [Wada, H., & Snell, E. E. (1961) J. Biol. Chem. 236, 2089-2095]. Thus, the biosynthesis of pyridoxal 5'-phosphate in the liver might be regulated by the product inhibition of both pyridoxamine phosphate oxidase and pyridoxal kinase. Kinetic studies revealed that the catalytic reaction of liver pyridoxal kinase follows an ordered mechanism in which pyridoxal and ATP bind to the enzyme and ADP and pyridoxal 5'-phosphate are released from the enzyme, in this order. Adenosine tetraphosphopyridoxal was found to be a slow-binding inhibitor of pyridoxal kinase. Pre-steady-state kinetics of the inhibition revealed that the inhibitor and the enzyme form an initial weak complex prior to the formation of a tighter and slowly reversing complex. The overall inhibition constant was 2.4 microM. ATP markedly protects the enzyme against time-dependent inhibition by the inhibitor, whereas another substrate pyridoxal affords no protection. By contrast, adenosine triphosphopyridoxal is not a slow-binding inhibitor of this enzyme.  相似文献   

17.
18.
Pyridoxal kinase displays high catalytic activity in the presence of metallothionein. The apoprotein of metallothionein as well as the peptide LYS-CYS-THR-CYS-CYS-ALA exert a strong inhibitory effect upon pyridoxal kinase by sequestering free Zn ions. Several steps intervene in the process of pyridoxal kinase activation, i.e. binding of Zn ions by ATP and interaction of Zn-ATP with the enzyme; but direct interaction between metallothionein and pyridoxal kinase (protein association) could not be detected by emission anisotropy measurements. Since the concentration of free Zn++ in mammalian tissues is lower than 10(-9)M, it is postulated that the concentration of metallothionein regulates the catalytic activity of pyridoxal kinase. The mechanism of reconstitution of the metalloenzyme yeast aldolase in the presence of metallothionein was also investigated.  相似文献   

19.
4-Benzoylbenzoic acid inhibits pyridoxal kinase activity competitively with respect to pyridoxal. The Ki was determined to be 5 x 10(-5) M. Binding studies showed that 4-benzoylbenzoic acid bound to pyridoxal kinase at a 1:1 molar ratio and with a dissociation constant (Kd) of 5.9 x 10(-5) M. Photoirradiation of pyridoxal kinase in the presence of a 10-fold excess of 4-benzoylbenzoic acid at pH 6.5 resulted in an irreversible loss of enzymatic activity; this photoinactivation was prevented by the presence of pyridoxal. Amino acid analysis revealed that 1 tyrosine residue/subunit was modified during photoinactivation. The presence of a tyrosine residue at the active site of pyridoxal kinase was confirmed by reaction with tetranitromethane. In the presence of 1 x 10(-4) M tetranitromethane, a complete loss of the kinase activity was observed after incubation at 25 degrees C for 8 min, with modification of a total of 3 tyrosine residues. The second-order rate constant (K2) of the reaction between the tyrosine residues and tetranitromethane was determined to be 53.3 s-1 M-1.  相似文献   

20.
Pyridoxal kinase catalyses the phosphorylation of pyridoxal, pyridoxine and pyridoxamine to their 5' phosphates and plays an important role in the pyridoxal 5' phosphate salvage pathway. The crystal structure of a dimeric pyridoxal kinase from Bacillus subtilis has been solved in complex with ADP to 2.8 A resolution. Analysis of the structure suggests that binding of the nucleotide induces the ordering of two loops, which operate independently to close a flap on the active site. Comparisons with other ribokinase superfamily members reveal that B. subtilis pyridoxal kinase is more closely related in both sequence and structure to the family of HMPP kinases than to other pyridoxal kinases, suggesting that this structure represents the first for a novel family of "HMPP kinase-like" pyridoxal kinases. Moreover this further suggests that this enzyme activity has evolved independently on multiple occasions from within the ribokinase superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号