首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The argF and argI genes code for similar proteins able to assemble into hybrid isoenzymes and are therefore thought to share a common origin. We show here that the nucleotide sequence of the promoter and operator regions of these two genes are highly homologous. DNA regions preceding the control sites also present significant homologies. The results support the notion of divergent evolution of the two genes from a common ancestor. Like argE and argCBH , argF and argI are controlled by a repressor molecule recognizing a family of similar operator sites. Attenuation appears to play no role in this regulation.  相似文献   

2.
3.
Summary A tranducing phage carrying some of the genes (men) defining the early stages of menaquinone biosynthesis was isolated from a pool of recombinant lambda phages that had been constructed from R.HindIII digests of E. coli DNA and the corresponding insertion vector. The lesions of menB and menC mutants were complemented by the phage but menD mutants were transduced either at low frequencies or not at all. This indicates that the transducing phage contains functional menB and menC genes but that only part of the menD gene had been cloned. The phage (G68) was accordingly disignated menCB(D). Studies with the transducing phage enabled earlier mapping data (Guest 1979) to be reinterpreted in favour of the gene order nalA.... menC..menB..menD.... purF. Restriction analyses established the presence of a bacterial DNA fragment (11.5 kb) linked by a R.HindIII target to the right arm of the genome but fused to the left arm of the vector. Hybridization studies confirmed that the cloned DNA was derived from a larger R.HindIII fragment (21 kb). A physical map of the men region was constructed and some flanking and overlapping fragments were identified.  相似文献   

4.
The DNA sequence of argI from Escherichia coli K12.   总被引:13,自引:3,他引:13       下载免费PDF全文
The argI gene from E. coli K12 has been sequenced. It contains an open reading frame of 1002 bases which encodes a polypeptide of 334 amino acids. Three such polypeptides are required to form the functional catalytic trimer (c3) of ornithine transcarbamoylase (OTCase-1, EC 2.1.3.3). The molecular mass of the mature trimer deduced from the amino acid sequence is 114,465 daltons. An altered form of argI was produced when a 1.6 kilobase DdeI fragment was subcloned into the HincII site of plasmid pUC8 extending the open reading frame an additional 20 nucleotides. It has been previously reported that the amino-terminal region of the respective polypeptides of argI, argF, and pyrB of E. coli possessed significant homology. In contrast, the homologous promoter/operator regions of argI and argF did not appear to share any homologies with pyrB. However, a closer scrutiny of the nucleotide sequence immediately preceding the pyrBI attenuator revealed a remarkable similarity to the argI and argF control region.  相似文献   

5.
6.
Summary The in vitro synthesis of enzymaticallyactive ornithine transcarbamylase (OTCase) directed by each of the E. coli K-12 OTCase genes (argF and argI) is described. The E. coli OTCase isoenzyme subunits are not identical, whether synthesized in vivo or in vitro, the argF-coded product being about 5% smaller. The OTCase protomers are enzymatically inactive but associate in vitro to an enzymatically active multimer. The rates of subunit association of argF and argI isoenzymes are considerably different. Utilizing the facile assay protocol presented, the regulation of in vitro OTCase synthesis by the specific holorepressor of the arginine regulon is demonstrated. Calculations based upon data presented indicate that there are about 65 molecules of argR gene product per bacterium, a substantially lower estimate than previously reported.This work is dedicated to Luigi Gorini without whom none of this would have been possible. His unbounded love of science and freedom will be remembered by so many, for so long.  相似文献   

7.
8.
The physiological and genetic controls operating on phosphate-regulated promoters were studied in greater detail. This was done by defining the control for three phosphate-regulated genes: phoA, psiE, and psiO. Each is highly inducible by phosphate starvation. Individually, these phosphate-starvation-inducible, psi, genes at the same time show common and differing features in their molecular control. The phoA gene, encoding alkaline phosphatase, is specifically induced by phosphate starvation. It is negatively controlled by phoR as well as by the phosphate-specific transport (PST) system in Escherichia coli. phoA induction is positively controlled by the phoB, M, and R products; it is unaffected by the cAMP and CAP system. The psiE and psiO genes were studied by using strains with lacZ fused to their respective promoters. psiE-lacZ is induced by phosphate-, carbon- or nitrogen-limited growth. Genetically, psiE-lacZ induction is partially phoB and phoR-dependent. However, its expression is phoM-independent. This implies that phoB/phoR coupled control differs from phoB/phoM coupled control. Repression of psiE-lacZ is substantially altered in only some PST mutants, such as phoT. In addition, psiE-lacZ is negatively controlled by the cAMP and CAP system. psiO-lacZ is induced by phosphate-, carbon- or nitrogen-limited growth or by anaerobiosis. Its expression is unaffected by any pho mutation that has been previously described. A cell density-dependent induction of psiO-lacZ is observed in lon mutants. Also, psiO-lacZ is negatively controlled by the cAMP-CAP system. In summary, these results demonstrate that co-ordinately regulated promoters can have some common regulatory elements while, at the same time, not sharing other controlling factors.  相似文献   

9.
The complete nucleotide sequence of argF is presented, together with that of an operator-constitutive mutant. ArgF is compared with the other gene coding for ornithine carbamoyltransferase (OTCase) in E. coli K-12, argI, and with pyrB, encoding the catalytic monomer of aspartate carbamoyltransferase (ATCase). ArgF and argI appear very closely related having emerged from a relatively recent ancestor gene. The relationship between OTCase and ATCase appears more distant. Nevertheless, the homology observed between the two proteins (mainly in the polar domain) suggests a common origin.  相似文献   

10.
Two genes for ornithinetranscarbamylase exist in strain Escherichia coli K-12, argI, at 85 min, and argF, at 7 min. In an attempt to compare the deoxyribonucleic acid material of these two genes, the lambda transducing phages carrying a portion of the argI region, lambda dvalS argI, lambda pvalS, and lambda dvalS pyrB, and of the argF region, lambda dargF, have been isolated. Their structure, including that of phi 80dargF previously isolated, was studied by the method of heteroduplex mapping. In this paper, the results of this mapping are reported.  相似文献   

11.
Two types of Escherichia coli K-12 regulatory mutants, partially or totally negative for the induction of the five catabolic enzymes (uronic isomerase, uxaC; altronate oxidized nicotinamide adenine dinucleotide: uxaB; mannonate hydrolyase, uxuA) and the transport system (exuT) of the hexuronate-inducible pathway, were isolated and analyzed enzymatically. Hexuronate-catabolizing revertants of the negative mutants showed a constitutive synthesis for some or all of these enzymes. Negative and constitutive mutations were localized in the same genetic locus, called exuR, and the following order for the markers situated between the min 65 and 68 was determined: argG--exuR--exuT--uxaC--uxaA--tolC. The enzymatic characterization of the pleiotropic negative and constitutive mutants of the exuR gene suggests that the exuR regulatory gene product exerts a specific and total control on the three exuT, uszB, and uxaC-uxaA operons of the galacturonate pathway and a partial control on the uxuA-uxuB operon of the glucuronate pathway. The analysis of diploid strains conatining both the wild type and a negative or constitutive allele of the exuR gene, as well as the analysis of thermosensitive mutants of the exuR gene, was in agreement with a negative regulatory mechanism for the control of the hexuronate system.  相似文献   

12.
13.
14.
15.
It has previously been shown that either phenylalanine codon, UUU or UUC, could be misread as leucine during phenylalanine starvation, if the codons encoded residue 8 of the Escherichia coli argI gene product, ornithine transcarbamylase (OTC). However, no leucine misincorporation was detected when either of these same codons encoded residue 3. Here we report that leucine misincorporation can be directed by a UUU codon for residue 3 of OTC during phenylalanine starvation, if the argI gene has been mutated so that the codon preceding the UUU has been changed from the rarely used glycine codon GGG to the more commonly used GGC.  相似文献   

16.
We compare the nucleotide sequences of the regulatory regions of five genes or groups of genes of the arginine regulon of Escherichia coli K-12: argF, argI, argR, the bipolar argECBH operon and the carAB operon. All these regions harbour one or two copies of a conserved 18 bp sequence which appears to constitute the basic arginine operator sequence (ARG box). We discuss the influence of ARG box copy number, degree of dyad symmetry, base composition, and position relative to the cognate promoter site on the derepression-repression ratios of the genes of the regulon. A novel hypothesis, based on structural considerations, is also put forward to account for the absence ot attenuation control.  相似文献   

17.
Summary Specialized transducing derivatives of the temperate bacteriophage P1 (P1std) are selected by transduction into recipients with deletions in the corresponding genes (Stodolsky 1973). When Escherichia coli K12 strains are used as donors in such transduction experiments, P1argF derivatives can be selected. The argF gene is unique to these strains (Glansdorff et al. 1967). Under these experimental conditions P1argF are formed with frequencies 10,000 times greater than other P1std. The majority of the P1argF derivatives that have been analyzed are indistinguishable by cleavage analyses. One such derivative, P1argF5 has been characterized in detail. Heteroduplex analysis against P1, P7, and P1CmO identified an 11 kb insertion of DNA precisely at the naturally occurring IS1 locus of P1. Cleavage analysis with EcoRI, BamHI and PstI confirmed this finding. To further define the argF insertion, a P1Cm13argF derivative was constructed having the IS1 sequences of Cm13 and argF in opposite orientation. Intrastrand annealing of P1Cm13argF5 DNA established that the argF segment is flanked by directly repeated IS1 sequences. The IS1-argF-IS1 segment is desigmated Tn2901. The assignment of the map position of the argF gene within the 11 kb insert of P1argF5 is discussed. The evolutionary significance of this finding and a model for P1argF formation is also presented.  相似文献   

18.
Genes can be classified as essential or nonessential based on their indispensability for a living organism. Previous researches have suggested that essential genes evolve more slowly than nonessential genes and the impact of gene dispensability on a gene’s evolutionary rate is not as strong as expected. However, findings have not been consistent and evidence is controversial regarding the relationship between the gene indispensability and the rate of gene evolution. Understanding how different classes of genes evolve is essential for a full understanding of evolutionary biology, and may have medical relevance in the design of new antibacterial agents. We therefore performed an investigation into the properties of essential and nonessential genes. Analysis of evolutionary conservation, protein length distribution and amino acid usage between essential and nonessential genes in Escherichia coli K12 demonstrated that essential genes are relatively preserved throughout the bacterial kingdom when compared to nonessential genes. Furthermore, results show that essential genes, compared to nonessential genes, have a significantly higher proportion of large (>534 amino acids) and small proteins (<139 amino acids) relative to medium-sized proteins. The pattern of amino acids usage shows a similar trend for essential and nonessential genes, although some notable exceptions are observed. These findings help to clarify our understanding of the evolutionary mechanisms of essential and nonessential genes, relevant to the study of mutagenesis and possibly allowing prediction of gene properties in other poorly understood organisms.  相似文献   

19.
S K Moore  E James 《Gene》1978,3(1):53-80
DNA isolated from each of the seven arginine transducing phages lambdaargA2cI857susS7, phi80ppc argECBH, phi80argF, phi80argF ilambdacI857, lambdaargF2, lambdaargF23 and lambdaargI valScI857susS7 has been specifically cleaved by the restriction endonucleases EcoRI, SmaI and HindIII. The DNA fragments resulting from single, and in some cases, double endonuclease digests were separated by electrophoresis in agarose and also in polyacrylamide gel. The electrophoretic patterns thus obtained were compared with those produced by digestion of DNA isolated from the corresponding lambda and phi80 parental phages. The majority of cleavage sites produced by the action of these restriction enzymes on arginine transducing DNA have been physically mapped.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号