首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Zymograms obtained by polyacrylamide gel electrophoresis of alcohol dehydrogenase (EC 1.1.1.1.) and aspartate aminotransferase (EC 2.6.1.1.) from 5 different soybean-Nicotiana hybrid cell lines showed enzymatic characteristics derived from both parents. Variations in the zymogram of the cell lines were observed during a culture period of 8 months (more than 100 generations). These variations may be related to chromosomal loss from the hybrid, particularly those of the Nicotiana parent.NRCC No. 15669  相似文献   

2.
3.
The interaction of tRNA with 80 S ribosomes from rabbit liver was studied using biochemical as well as fluorescence techniques. Besides the canonical A and P sites, two additional sites were found which specifically bind deacylated tRNA. One of the sites is analogous to the E site of prokaryotic ribosomes, in that binding of tRNA is labile, does not depend on codon-anticodon interaction, does not protect the anticodon loop from solvent access, and requires the presence of the 3'-terminal adenosine of the tRNA. In contrast, the stability of the tRNA complex with the second site (S site) is high. tRNA binding to the S site is also codon-independent; nevertheless, the anticodon loop is shielded from solvent access. Removal of the 3'-terminal adenosine decreases the affinity of tRNA(Phe) for the S site approximately 50-fold. tRNA(Phe) is retained at the S site during translocation and through poly(Phe) synthesis. Thus, the S site does not seem to be an intermediate site for the tRNA during the elongation cycle. Rather, the tRNA bound to the S site may allosterically modulate the function of the ribosome.  相似文献   

4.
Elongation factor-dependent affinity labeling of Escherichia coli ribosomes was obtained using a functional analogue of aminoacyl-tRNA. Since elongation factor Tu (EF-Tu) screens both the modified aminoacyl-tRNAs and the ribosomal complexes for active particles, only functional macromolecular complexes are examined. This approach also provides an unequivocal identification of the transfer RNA binding site from which affinity labeling occurs. Nε-bromoacetyl-Lys-tRNA was prepared by covalently attaching an electrophilic group to the side-chain of the amino acid. This chemical modification did not interfere with function, since the ?BrAcLys-tRNA participated successfully in EF-Tu and poly(rA)-dependent binding to ribosomes, peptide bond formation, and elongation factor G (EF-G)-mediated translocation. Affinity labeling of ribosomal RNA was observed only in those incubations which contained both EF-Tu and EF-G. The crosslinking of ?BrAcLys-tRNA to 23 S rRNA was found even if fusidic acid was added to the incubation before EF-G. The dependence of the covalent reaction on EF-G demonstrates, unambiguously, that a reactive residue of 23 S rRNA is located adjacent to the 3′ end of the functionally defined P site. Similarly, the affinity labeling of proteins L13/14/15, L2, L32/33, and L24 required EF-G-dependent translocation of ?BrAcLys-tRNA into the P site. Protein L27 was alkylated following the EF-Tu-dependent binding of ?BrAcLys-tRNA to the ribosome, and the extent of affinity labeling was stimulated by the addition of EF-G to the incubation. Double-label dipeptide experiments confirmed that affinity labeling occurred from functional tRNA binding sites by demonstrating that the same ?BrAcLys-tRNA which reacted covalently with 23 S rRNA or a ribosomal protein could also participate in peptide bond formation. Finally, the ribosome affinity labeling obtained with ?BrAcLys-tRNA · EF-Tu · guanylylimidodiphosphate differed little from that obtained with ?BrAcLys-tRNA · EF-Tu · GTP. This work constitutes the first direct examination of the aminoacyl ends of the EF-Tu-dependent conformational states of the ribosomal complex, and demonstrates the potential value of functional Lys-tRNA analogues with different probes attached to the lysine side-chain.  相似文献   

5.
The effect of ribosomal antibiotics on the photoinduced affinity labeling of Escherichia coli ribosomes by puromycin [Cooperman, B.S., Jaynes, E.N., Brunswick, D.J., & Luddy, M.A. (1975) Proc. Natl. Acad. Sci. U.S.A. 72, 1974; Jaynes, E.N. Jr., Grant, P.G., Giangrande, G., Wieder, R., & Cooperman, B.S. (1978) Biochemistry 17, 561] has been studied. Although blasticidin S, sparsomycin, lincomycin, and erythromycin are essentially without effect, major changes are seen on addition of either chloramphenicol or tetracycline. The products of photoincorporation have been characterized by one- and two-dimensional gel electrophoresis and by specific immunoprecipitation with antibodies to ribosomal proteins. In the presence of chloramphenicol, protein S14 becomes the major labeled protein. In the presence of tetracycline, L23 remains the major labeled protein, but the yield of labeled ribosomes is enormously increased, and the labeling is more specific for L23. These results are discussed in terms of the known modes of action of these antibiotics and the photoreactivity of tetracycline.  相似文献   

6.
The topography of 5.8 rRNA in rat liver ribosomes has been examined by comparing diethyl pyrocarbonate-reactive sites in free 5.8 S RNA, the 5.8 S-28 rRNA complex, 60 S subunits, and whole ribosomes. The ribosomal components were treated with diethyl pyrocarbonate under salt and temperature conditions which allow cell-free protein synthesis; the 5.8 S rRNA was extracted, labeled in vitro, chemically cleaved with aniline, and the fragments were analyzed by rapid gel-sequencing techniques. Differences in the cleavage patterns of free and 28 S or ribosome-associated 5.8 S rRNA suggest that conformational changes occur when this molecule is assembled into ribosomes. In whole ribosomes, the reactive sites were largely restricted to the "AU-rich" stem and an increased reactivity at some of the nucleotides suggested that a major change occurs in this region when the RNA interacts with ribosomal proteins. The reactivity was generally much less restricted in 60 S subunits but increased reactivity in some residues was also observed. The results further indicate that in rat ribosomes, the two -G-A-A-C- sequences, putative binding sites for tRNA, are accessible in 60 S subunits but not in whole ribosomes and suggest that part of the molecule may be located in the ribosomal interface. When compared to 5 S rRNA, the free 5.8 S RNA molecule appears to be generally more reactive with diethyl pyrocarbonate and the cleavage patterns suggest that the 5 S RNA molecule is completely restricted or buried in whole ribosomes.  相似文献   

7.
Binding studies with [3H]dexamethasone identified two binding sites on plasma membranes prepared from the male rat liver, a low-capacity site with a KD of 7.0 nM and a higher-capacity site with a KD of 90.1 nM. Both sites exhibited glucocorticoid responsiveness and specificity for glucocorticoids and progestins. Triamcinolone acetonide, which competes well for the binding of dexamethasone to the cytosolic glucocorticoid receptor, did not compete well for the binding of [3H]dexamethasone to the plasma-membrane binding sites. The binding sites were sensitive to protease and neuraminidase treatment, and resistant to extraction with NaCl, but were extracted with the detergent Triton X-100. As these experiments indicated the presence of plasma-membrane protein components which bind glucocorticoids at physiological concentrations, affinity-labelling experiments with dexamethasone mesylate were conducted. Two peptides were specifically labelled, one at approx. Mr 66,000 and one at Mr 45,000. The Mr-66,000 peptide was not sensitive to glucocorticoids, and was extracted by NaCl, and so did not correspond to either of the sites identified in the dexamethasone-binding studies. The Mr-45,000 entity, on the other hand, resembled the dexamethasone-binding sites in its response to glucocorticoid manipulation of the animal and in its resistance to salt extraction. This peptide was not present in rat serum. Thus we have identified a plasma-membrane peptide which binds dexamethasone. Whether this peptide is involved in transport of the glucocorticoid across the plasma membrane remains to be determined.  相似文献   

8.
9.
N-(2-Nitro-4-azidobenzoyl)-[3H]puromycin (NAB-puromycin) was synthesized as a photoreactive derivative of puromycin in order to detect ribosomal proteins located near the peptidyltransferase centre of rat liver ribosomes. Irradiation of ribosome-NAB-puromycin complexes leads to covalent attachment of the affinity label to proteins of the large ribosomal subunit, in particular to proteins L28/29, and, to a somewhat lower extent, to proteins L4, L6, L10 and L24. The results are discussed in the light of earlier studies performed with other affinity labels that attacked the peptidyltransferase region of rat liver ribosomes.  相似文献   

10.
Summary We have identified proteins involved in the peptidyl-tRNA-binding site of rat liver ribosomes, using an affinity label designed specifically to probe the P-site in eukaryotic peptidyl transferase. The label is a 3-terminal pentanucleotide fragment of N-acetylleucyl-tRNA in which mercury atoms have been added at the C-5 position of the three cytosine residues. This mercurated fragment can bind to rat liver peptidyl transferase and function as a donor of N-acetylleucine to puromycin. Concommitant with this binding, the mercury atoms present in the fragment can form a covalent linkage with a small number of ribosomal proteins. The major proteins labeled by this reagent are L5 and L36A. Four protein spots are found labeled to a lesser extent: L10, L7/7a, L3/4 and L25/31. Each of these proteins, therefore, is implicated in the binding of the 3-terminus of peptidyl-tRNA.The results presented here are correlated with other investigations of the structure-function aspects of rat liver peptidyl transferase. Using these data, we have constructed a model for the arrangement of proteins within this active site.  相似文献   

11.
Monobromobimane (mBBr) is a substrate of both mu- and alpha-class rat liver glutathione S-transferases, with Km values of 0.63 microM and 4.9 microM for the mu-class isozymes 3-3 and 4-4, respectively, and 26 microM for the alpha-class isozymes 1-1 and 2-2. In the absence of substrate glutathione, mBBr acts as an affinity label of the 1-1 as well as mu-class isozymes, but not of the alpha-class 2-2 isozyme. Incubation of rat liver isozyme 1-1 with mBBr at pH 7.5 and 25 degrees C results in a time-dependent inactivation of the enzyme but at a slower (threefold) rate than for reactions with the mu-class isozyme 3-3 and 4-4. The rate of inactivation of 1-1 isozyme by mBBr is not decreased but, rather, is slightly enhanced by S-methyl glutathione. In contrast, 17 beta-estradiol-3,17-disulfate (500 microM) gives a 12.5-fold decrease in the observed rate constant of inactivation by 4 mM mBBr. When incubated for 60 min with 4 mM mBBr, the 1-1 isozyme loses 60% of its activity and incorporates 1.7 mol reagent/mol subunit. Peptide analysis after thermolysin digestion indicates that mBBr modification is equally distributed between two cysteine residues at positions 17 and 111. Modification at these two sites is reduced equally in the presence of the added protectant, 17 beta-estradiol-3,17-disulfate, suggesting that Cys 17 and Cys 111 reside within or near the enzyme''s steroid binding sites. In contrast to the 1-1 isozyme, the other alpha-class isozyme (2-2) is not inactivated by mBBr at concentrations as high as 15 mM. The different reaction kinetics and modification sites by mBBr suggest that distinct binding site structures are responsible for the characteristic substrate specificities of glutathione S-transferase isozymes.  相似文献   

12.
p-nitrophenylcarbamyl-methionyl-tRNAfMet is shown to act as an analogue of fMet-tRNAfMet in initiation complex formation. It binds to E. coli ribosomes in the presence of initiation factors and R 17-RNA as messenger. Covalent bond formation occurs in the complex between the Met-tRNAfMet derivative and protein of the 50 S ribosomal subunit. The protein labeled predominantly in the reaction has been identified as L 27 indicating that this protein is located at the donor-site of the ribosome.  相似文献   

13.
Tyrosine 3-monooxygenase was purified to homogeneity, as judged by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, from rat adrenal. The specific activity of the final preparation was approximately 1,600 nmol min-1 mg protein-1, which was much higher than the highest yet reported. The enzyme was markedly stabilized in the presence of glycerol, Tween 80 and EDTA. As judged by gel filtration on Ultrogel AcA 34, sodium dodecyl sulfate/polyacrylamide gel electrophoresis and cross-linking studies, the enzyme appeared to be composed of four identical subunits, each possessing a molecular weight of 59,000. The isoelectric point of the enzyme was estimated to be 6.7 in the presence of 8 M urea and 6.6 in its absence. Amino acid analysis of the enzyme revealed a fairly high content of serine residues in this protein. Purification of the enzyme caused changes in the kinetic properties of the enzyme. The Km for 2-amino-4-hydroxy-6-methyl-5,6,7,8-tetrahydropteridine decreased from 220 microM to 58 microM. The pH profile for the enzyme activity became more broad and the pH optimum was changed from an acid pH to a neutral pH. Although polyanions, such as heparin and dextran sulfate, markedly stimulated the activity of crude enzyme by increasing the V, they were much less effective in the activation of purified enzyme. A marked stimulation of the enzyme activity by phospholipids, such as phosphatidylserine, phosphatidylinositol, phosphatidylcholine and phosphatidylethanolamine, were not observed in both pure and crude preparations even at low concentrations of the pterin cofactor.  相似文献   

14.
RsgA (ribosome-small-subunit-dependent GTPase A, also known as YjeQ) is a unique GTPase in that guanosine triphosphate hydrolytic activity is activated by the small subunit of the ribosome. Disruption of the gene for RsgA from the genome affects the growth of cells, the subunit association of the ribosome, and the maturation of 16S rRNA. To study the interaction of Escherichia coli RsgA with the ribosome, chemical modifications using dimethylsulfate and kethoxal were performed on the small subunit in the presence or in the absence of RsgA. The chemical reactivities at G530, A790, G925, G926, G966, C1054, G1339, G1405, A1413, and A1493 in 16S rRNA were reduced, while those at A532, A923, G1392, A1408, A1468, and A1483 were enhanced, by the addition of RsgA, together with 5′-guanylylimidodiphosphate. Among them, the chemical reactivities at A532, A790, A923, G925, G926, C1054, G1392, A1413, A1468, A1483, and A1493 were not changed when RsgA was added together with GDP. These results indicate that the binding of RsgA induces conformational changes around the A site, P site, and helix 44, and that guanosine triphosphate hydrolysis induces partial conformational restoration, especially in the head, to dissociate RsgA from the small subunit. RsgA has the capacity to coexist with mRNA in the ribosome while it promotes dissociation of tRNA from the ribosome.  相似文献   

15.
High affinity ryanodine binding sites in rat liver endoplasmic reticulum   总被引:2,自引:0,他引:2  
The binding of [3H]ryanodine to liver microsomal subfractions was investigated. The smooth microsomal membranes were enriched with ryanodine binding sites and also with a polypeptide of 360 kDa. Caffeine completely inhibited [3H]ryanodine binding. Ryanodine also affected the membrane Ca2+ permeability. At low concentrations (less than 10 microM) ryanodine stimulated Ca2+ efflux and at higher concentrations (greater than 50 microM) it blocked Ca2+ efflux. These results suggest that hepatic microsomes contain ryanodine binding sites which can modify the membrane permeability for Ca2+.  相似文献   

16.
Steroids must traverse the nuclear envelope before exerting their action at the chromatin. However, few studies have been done to elucidate the mechanism by which steroids traverse this membrane barrier. As first steps towards investigating the mechanism, we have characterized the binding sites for dexamethasone on male rat liver nuclear envelopes. The nuclear envelopes, prepared in the presence of dithiothreitol, were isolated from purified nuclei after treatment with DNase 1 at high pH. Binding of dexamethasone to the nuclear envelopes was measured after 16 h of incubation at 0-4 degrees C. At pH 7.4, only a single high capacity, low affinity binding site for dexamethasone was identified. However, at pH 8.6, two sites were identified; a low capacity, high affinity site and a high capacity, low affinity site. Adrenalectomy of the animal before preparation of the membranes caused loss of the high affinity site and reduction in the number of the lower affinity sites. Acute dexamethasone treatment of adrenalectomized rats resulted in the reappearance of the high affinity site but long term treatment with dexamethasone was required for complete restoration of the high affinity sites and reappearance of any of the low affinity sites. The steroid specificity of these nuclear envelope binding sites was different from that of the cytosolic glucocorticoid receptor, generally showing broader specificity. However, triamcinolone acetonide, which is a potent competitor for binding to the glucocorticoid receptor, did not complete effectively. The binding sites were sensitive to protease treatment and salt extraction studies revealed that the dexamethasone binding sites do not represent proteins non-specifically bound to the nuclear envelope. The affinity and the hormone responsiveness of the high affinity site are similar to those of the nuclear glucocorticoid receptor. Therefore, the nuclear envelope may be a site of action of glucocorticoids.  相似文献   

17.
It was shown that Phe-tRNA Phe derivatives bearing arylazidogroups scattered statistically on N7 guanosine residues retain the ability to EF-Tu-dependent binding to E. coli ribosomes. UV-irradiation of the corresponding complex with the derivative of Phe-tRNA Phe located at A-site results in a specific modification of both ribosomal subunits to an approximately equal extent. It was found that proteins S9, S15, S16, S17, S18, S19 and L8/L9, L13, L15, L27 are labelled at A-site.  相似文献   

18.
Derivatives of 5'-32P labeled (pU)3 an (pU)6 bearing 4-(N-2-chloroethyl-N-methylamino)benzylmethylamine residue attached to 5'-phosphate via phosphamide bond and (Up)5U[32P]pC and (Up)11U[32P]pC bearing 4-(N-2-chloroethyl-N-methylamino)benzyl residue attached to 3'-end via benzylidene bond were applied for the affinity labeling of 80S ribosomes from human placenta in the presence of a cognate tRNA. The derivatives of 32P-labeled pAUG and pAUGU3 analogous to the 5'-phosphamides of (pU)n were used for affinity labeling of 40S subunits in the presence of ternary complex eIF-2.GTP.Met-tRNA(f). The sites of the reagents' attachment to 18S ribosomal RNA were identified by blot-hybridization of the modified 18S rRNA with restriction fragments of the corresponding rDNA. They were found to be located within positions 976-1057 for (pU)6 and pAUGU3 derivatives and within 976-1164 for (pU)3 and pAUG ones. The sites of 18S rRNA modification with the derivatives of (Up)5UpC and (Up)11UpC were found within positions 1610-1869 at 3'-end of the molecule. All the sites identified here are located presumably within highly conserved parts of the eukaryotic small subunit rRNA secondary structure.  相似文献   

19.
Problems concerning the interaction of tRNA with Escherichia coli ribosomes in different functional states were studied. These problems deal first of all with the number of tRNA-binding sites on ribosome, the conservation of the codon-anticodon interaction at the P-site and with regions of tRNA interacting with ribosome. The problems concerning structural organization of tRNA-binding centers are discussed in more detail.  相似文献   

20.
M Laudon  N Zisapel 《FEBS letters》1991,288(1-2):105-108
N-Bromoacetyl-2-iodo-5-methoxytryptamine (BIM), a novel derivative of the biologically active melatonin analog, 2-iodomelatonin, was prepared and used to identify melatonin binding proteins in rat brain synaptosomes. Incubation of the synaptosomes with BIM resulted in a time and concentration dependent, irreversible inhibition of 2-[125I]iodomelatonin binding. In parallel, the radioactive form of BIM, N-bromoacetyl-2-[125I]iodo-5-methoxytryptamine ([125I]BIM) became incorporated into the synaptosomes. The incorporation of [125I]BIM was inhibited by BIM, 2-iodomelatonin and melatonin but not by 5-methoxytryptamine or N-acetyl serotonin. [125I]BIM became covalently attached to three polypeptides with apparent molecular weight values of 92, 55 and 45 kDa; the labeling of all three proteins was markedly inhibited by melatonin. These results indicate that the 92, 55 and 45 kDa polypeptides are melatonin binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号