首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Acta Oecologica》2000,21(4-5):257-265
Despite year round availability of foliage, abundance of generalist noctuid larvae (Lepidoptera: Noctuidae) in evergreen-dominated Mediterranean forests has a narrow, distinct spring peak. This restricted larval period has been suggested to result in part from avoidance of the nutritionally poor mature foliage, and preference for nutritionally superior spring-produced young leaves. This study examines this hypothesis by (i) documenting differences in nutritional characteristics between expanding (April) and mature (June) young leaves of the evergreen Mediterranean shrub Daphne laureola L. (Thymelaeaceae), and (ii) experimentally studying the feeding preferences of noctuid larvae for young leaves, old leaves (≥ 1 yr old), and developing fruits of this species in one south-eastern Spanish locality. Young leaves of D. laureola declined in nutrient concentration and specific dry mass from April to June. The responses of noctuid larvae, in terms of both relative preference and total consumption, to this seasonal variation in chemical and physical features of young leaves were also investigated. When noctuid larvae were simultaneously offered young leaves, old leaves and developing fruits, they exhibited similar preferences for young leaves and developing fruits, and rejected old leaves developed during the previous year. Noctuid larvae did not modify their consumption of young leaves relative to old leaves and developing fruits in response to seasonal changes. Food selection patterns exhibited by D. laureola noctuid herbivores, notably the rejection of old leaves in favour of young ones, are consistent with the hypothesis relating restricted larval periods of these generalist consumers with the low food value of the previous season leaves of evergreen Mediterranean plants.  相似文献   

2.
ABSTRACT.
  • 1 Sweden has two disjunct populations of the speckled wood butterfly, Pararge aegeria L. The southern population has two generations per year but the central Swedish population is univoltine. When rearing larvae from central Sweden under normal photoperiodic conditions but at temperatures slightly above the ambient, 42% of the larvae developed directly and produced a second generation of adults the same summer. The egg—larval development time of the directly developing individuals was about 40 days, whereas that of the individuals developing along the univoltine pathway was about 100 days.
  • 2 Larvae of the central Swedish population normally aestivate during part of the summer even though abundant food is available. In the closely related Lasiommata petropolitana F., which is the only Swedish satyrid that overwinters in the pupal stage besides P.aegeria, larvae do not aestivate, indicating that there does not seem to be any obligatory association between pupal hibernation and larval aestivation.
  • 3 Development rates of aestivating and directly developing P.aegeria are equal up to the third larval instar. During the third and fourth instars, however, the development rate of aestivating individuals is retarded and females also have an additional fifth instar.
  • 4 Since the central Swedish P.aegeria have the capacity to develop directly, and the southern Swedish ones have the capacity to aestivate, the evidence indicates that the outcome of the cost/benefit balance of univoltine versus bivoltine development differs between the two areas.
  相似文献   

3.
  • 1 The browntail moth Euproctis chrysorrhoea is a highly polyphagous univoltine forest pest. Although its young larvae usually overwinter in diapause from early autumn to the beginning of spring, winter larval feeding has been reported when this species feeds on the evergreen woody shrub strawberry tree Arbutus unedo.
  • 2 The present study investigated life‐history traits of four populations of E. chrysorrhoea feeding on A. unedo, including phenology of the different life stages, larval feeding activity and diapause incidence. By modelling the relationship between larval size and host plant leaf persistence, elevation and mean annual temperature, we also studied larval development in ten populations of this species sampled from a range of geographical locations in Spain, from both A. unedo and deciduous hosts.
  • 3 The results obtained revealed that on A. unedo, E. chrysorrhoea phenology has shifted: from October to March, A. unedo larvae doubled their size, whereas, on deciduous Ulmus minor and Quercus faginea, larval size did not change. General linear models demonstrated that such differences were not related to environmental variables. We also found that on A. unedo larval feeding was arrested for 2 months, with this period representing a true diapause.
  • 4 The results obtained in the present study suggest that E. chrysorrhoea populations are phenologically adapted to their local host plants, and that the presence of foliage is a key element in the phenological shift reported on A. unedo. These results may have implications with respect to the formation of E. chrysorrhoea host races.
  相似文献   

4.
5.
Abstract.
  • 1 Unlike most parasitoids, tachinid flies of the tribe Ormiini use sound to locate their hosts. Although thought to exert selection pressure on their host's calling behaviour, little is known about the biology of ormiines. Accordingly, this study reports the biology and impact of the ormiine Hornotrixa sp. upon calling males of the univoltine bushcricket Sciarasaga quadrata Rentz in south-western Australia.
  • 2 Populations of adult S.quadrata were monitored in the field over two successive calling seasons. Females, which do not call, were not parasitized by Hornotrixa sp., but the risk of parasitism for males increased as the 3-month calling season progressed. Parasitism did not commence until c. 2 weeks into the calling season, but by the end of the season up to 87% of surviving males were parasitized.
  • 3 Parasitized males lived for 14 days and were found singing until their penultimate evening before death in the field. Unparasitized males lived on average 69 days and a maximum of 119 days.
  • 4 Multiparasitism of hosts was common, with up to sixteen fly larvae found within parasitized males. The number of fly larvae within hosts significantly increased at the end of the season. However, successful emergence of fly larvae from hosts, as well as pupal size, significantly decreased as more than one fly larva developed within the host.
  • 5 Hornotrixa sp. has a long pupal duration of 30–31 days at 20°C. As a consequence, only one complete fly generation, which overwinters in the pupal stage, is likely within each host generation.
  • 6 No evidence for differential (size-bias) mortality by Hornotrixa sp. on male S.quadrata was found. The size of parasitized and unparasitized males collected in the field was not significantly different.
  • 7 It is concluded that Hornotrixa sp. is a significant mortality factor acting on the survival of adult male S.quadrata.
  相似文献   

6.
Abstract.  1. Specialization on ephemeral resources (e.g. new leaves) should produce large annual variation in herbivore population size when the timing of availability of those resources is unpredictable. Despite considerable evidence for impacts of synchrony with budburst on survival of larval Lepidoptera, previous studies of adult Geometridae and Noctuidae found no correlations between insect phenology and population variability.
2. We surveyed larval Lepidoptera feeding on Quercus alba and Q. velutina in Missouri from 1993 to 2003 and examined population variability, measured as the coefficient of variation of population density (CV), in a subset of abundant species. We compared CV values among species whose larvae feed only in spring, early summer, mid-summer, late summer, or all season. We predicted that univoltine species whose larvae eclose and complete development in spring during leaf expansion would have higher variability than species feeding later in the season, having multiple generations, or having longer development times.
3. As predicted and consistent with hypotheses, spring-feeding species had CV values 32% higher than species feeding in summer months. Coefficients of variation were also 34% higher in leaf-rolling and mining guilds compared with free-feeders, suggesting that mobile species may compensate for asynchrony with budburst by dispersing to higher quality plants or plant parts. Multivoltine species, however, did not differ from univoltine species in population variability.
4. Our results suggest that asynchrony with plant phenology and factors that might exacerbate it, such as climate change, will have the largest impacts on the dynamics of spring-feeding Lepidoptera, particularly species with limited mobility.  相似文献   

7.
We used European geometrid moths (>630 species) as a model group to investigate how life history traits linked to larval host plant use (i.e., diet breadth and host-plant growth form) and seasonal life cycle (i.e., voltinism, overwintering stage and caterpillar phenology) are related to adult body size in holometabolous insect herbivores. To do so, we applied phylogenetic comparative methods to account for shared evolutionary history among herbivore species. We further categorized larval diet breadth based on the phylogenetic structure of utilized host plant genera. Our results indicate that species associated with woody plants are, on average, larger than herb feeders and increase in size with increasing diet breadth. Obligatorily univoltine species are larger than multivoltine species, and attain larger sizes when their larvae occur exclusively in the early season. Furthermore, the adult body size is significantly smaller in species that overwinter in the pupal stage compared to those that overwinter as eggs or caterpillars. In summary, our results indicate that the ecological niche of holometabolous insect herbivores is strongly interrelated with body size at maturity.  相似文献   

8.
9.
Mutual use of leaf-shelters by lepidopteran larvae on paper birch   总被引:1,自引:0,他引:1  
Abstract.
  • 1 Many species of birch-feeding Lepidoptera make leaf-shelters by tying leaves together with silk. Several species, or several instars of a single species, may be found together within a single leaf-shelter.
  • 2 Shelters made in June by the birch tube-maker Acrobasis betulella (Pyralidae) are colonized throughout the season by other Lepidoptera. Artificial A.betulella shelters, made by tying leaves together with string, were colonized at a greater rate than nearby control foliage, indicating that secondary species are indeed responding to the presence of the shelter, and not to some other aspect of plant quality.
  • 3 Several species in the families Oecophoridae, Gelichiidae and Stenomidae make ‘leaf-sandwiches’ by tying two leaves together; these are later colonized by oviposition from adult A.betulella. Artificial sandwiches made by joining leaves together with paperclips were colonized by several species of sandwich-makers, as well as by A.betulella. Colonization occurred mainly via oviposition, although some sandwiches may have been colonized by wandering larvae.
  • 4 First instar A.betulella, which cannot form their own shelter, enjoyed greater survivorship when placed in artificial leaf-sandwiches than when placed on leaves without sandwiches.
  相似文献   

10.
The relationships between foliage permanence and flowering throughout the year were analyzed in 92 woody species of Cerrado vegetation categorized as either deciduous (DE), semideciduous (SD) or evergreen (EV). Flowering of DE, SD and EV species was investigated via three variables, measured over the course of the year: flowering duration (FLD), calculated as the number of months in flower in each species; flowering distribution (FDI), calculated as the number of species in flower per month; and flowering peak (FPE), defined as the four consecutive months yielding the highest number of species in flower. The months with the highest numbers of species in flower were October (52 species), September (50) and August (49). These months correspond to the period of transition from the dry season to the wet season. In the majority of species studied, seasonal climatic factors were strong enough to induce fruit formation in the dry season and seed dispersal in the following wet season, when sufficient water was available to support germination and plantlet growth. However, significant differences in FLD, FDI and FPE were found among the leaf phenological groups. High FLD in EV species is likely favored by the continuous input of resources from the year-round foliage. In contrast, DE species employ reserves of carbon, water and nutrients to form new leaves and flowers on a crown free of foliage at the end of the dry season. In DE species, their low FLD may reduce the impact of flowering on reserve consumption. SD species showed an intermediate level of foliage persistence, resulting in intermediate FLD values. In addition, SD species exhibited a different pattern of flowering distribution from those of DE and EV species. Many SD species have two flowering periods per year. The first period occurs when the crowns are full of leaves, in the middle of the dry season in June, similar to EV species. The second occurs when only half of the original foliage area is present, near the peak of the dry season in September, similar to DE species. Therefore, despite a strong influence of seasonal climatic conditions on the flowering behavior of DE, SD and EV woody species of Cerrado vegetation, these leaf phenological groups differ significantly in FLD, FDI and FPE.  相似文献   

11.
  • 1 Spatial and temporal variation in the distribution and feeding of non‐predatory macroinvertebrates was investigated in a first‐order, acid stream in the Ashdown Forest, southern England.
  • 2 Stonefly (Nemouridae) and chironomid (Orthocladiinae) larvae were abundant on the upper surfaces of mineral substrata of three sizes (small stones, large stones, bedrock). The density of larvae in each taxonomic group did not vary among substrata of different sizes, although strong seasonal variation existed.
  • 3 Nemourids and chironomids (H. marcidus) collected from the upper surfaces of substrata exhibited generalist feeding habits, consuming algae (diatoms, coccoid and filamentous green algae), detritus (biofilm matrix material and fine particulate organic matter (FPOM)) and inorganic debris.
  • 4 There was spatial variation in the gut contents of nemourids. The proportion of algae in the guts of larvae often increased with the size of the substratum from which they were collected. Strong temporal variation in the composition of the diet also existed. Nemourids ingested a large quantity of attached algae and biofilm matrix from the biofilm in spring and winter, but consumed loose FPOM and associated microflora in summer and autumn.
  • 5 We conclude that, in this acid stream, the trophic linkage between algae and grazers is maintained by ‘detritivorous’ stonefly and chironomid species. The relationship between the feeding habits of these larvae and other life‐history attributes, such as mouthpart morphology and mobility, is discussed.
  相似文献   

12.
Seasonal polyphenisms are widespread in nature, yet the selective pressures responsible for their evolution remain poorly understood. Previous work has largely focussed either on the developmental regulation of seasonal polyphenisms or putative ‘top‐down’ selective pressures such as predation that may have acted to drive phenotypic divergence. Much less is known about the influence of seasonal variation in resource availability or seasonal selection on optimal resource allocation. We studied seasonal variation in resource availability, uptake and allocation in Araschnia levana L., a butterfly species that exhibits a striking seasonal colour polyphenism consisting of predominantly orange ‘spring form’ adults and black‐and‐white ‘summer form’ adults. ‘Spring form’ individuals develop as larvae in the late summer, enter a pupal diapause in the fall and emerge in the spring, whereas ‘summer form’ individuals develop directly during the summer months. We find evidence for seasonal declines in host plant quality, and we identify similar reductions in resource uptake in late summer, ‘spring form’ larvae. Further, we report shifts in the body composition of diapausing ‘spring form’ pupae consistent with a physiological cost to overwintering. However, these differences do not translate into detectable differences in adult body composition. Instead, we find minor seasonal differences in adult body composition consistent with augmented flight capacity in ‘summer form’ adults. In comparison, we find much stronger signatures of sex‐specific selection on patterns of resource uptake and allocation. Our results indicate that resource dynamics in A. levana are shaped by seasonal fluctuations in host plant nutrition, climatic conditions and intraspecific interactions.  相似文献   

13.
The effect of a summer fire or a winter fire on tree and shrub populations in two rangeland vegetation types in central Australia was investigated. Changes in population structure of two major species occurred regardless of the season of burn. The decrease in overall density of Acacia aneura, Eremophila gilesii and Cassia spp. was similar for summer and winter fire treatments: greater reduction of E. latrobei followed the summer burn. Higher fire line intensity caused greater mortality in all species but enhanced germination in A. aneura, a potentially ‘weedy’ species. Winter fires appear to be preferable for management of woody plants in the particular vegetation types studied.  相似文献   

14.
1. Interactions between two trophic levels can be very intimate, often making species dependent on each other, something that increases with specialisation. Some specialised multivoltine herbivores may depend on multiple plant species for their survival over the course of a growing season, especially if their food plants are short‐lived and grow at different times. Later generations may exploit different plant species from those exploited by previous generations. 2. Multivoltine parasitoids as well as their natural enemies must also find their hosts on different food plants in different habitats across the season. Secondary hyperparasitoid communities have been studied on cocoons of the primary parasitoid, Cotesia glomerata (Hymenoptera: Braconidae), on black mustard (Brassica nigra) – a major food plant of its host, the large cabbage white (Pieris brassicae) – which grows in mid‐summer. 3. Here, hyperparasitoid communities on C. glomerata pupal clusters were studied on an early‐season host, garlic mustard, Alliaria petiolata, over ‘time’ (one season, April–July) in six closely located ‘populations’ (c. 2 km apart), and within two different ‘areas’ at greater separation (c. 100 km apart). At the plant level, spatial effects of pupal ‘location’ (canopy or bottom) on the plant were tested. 4. Although large‐scale separation (area) did not influence hyperparasitism, sampling time and small‐scale separation (population) affected hyperparasitism levels and composition of hyperparasitoid communities. Location on the plant strongly increased proportions of winged species in the canopy and proportions of wingless species in bottom‐located pupae. 5. These results show that hyperparasitism varies considerably at the local level, but that differences in hyperparasitoid communities do not increase with spatial distance.  相似文献   

15.
16.
Abstract Evaporative aerodynamics determine the foliage projective cover of the understorey of perennial tussock grasses and associated perennial herbs in the savannah woodland dominated by Eucalyptus camalduknsis on gleyed podsolic soils in the Mediterranean climate of the South‐East District of South Australia. By the mid 1940s, winter‐spring evapotranspiration from the ‘thin’ leaves (with low leaf specific weight) of introduced annual plants was depleting surface soil water and thus reducing the annual growth of the summer‐growing savannah understorey; perennial herbs between the tussock grasses were the first to succumb to this competition. During spring, the percentage of the ground covered by the savannah understorey was increased by 10% in the subhumid zone to 30% in the humid zone as the pre‐European perennial herbs between the tussock grasses were replaced by introduced annuals. Application of phosphatic fertilizer to the understorey increased the growth of introduced annuals, which formed a dense stratum during their winter‐spring growing season, increasing evapotranspiration and leading eventually to the extinction of the native perennial grasses. When the savannah understorey, invaded by introduced annuals in the mid‐1940s, was converted to improved pasture, the percentage of ground covered by the seasonal foliage was increased by 20–30%; 100% coverage of overlapping foliage resulted in the humid zone.  相似文献   

17.
18.
Pupa-eating cannibalism occurs naturally in several insect species. Byasa alcinous is a multivoltine species of Red-bodied Swallowtail butterfly found in East Asia, which diapauses as pupa over the winter and whose larvae cannibalize eggs and pupae. We investigate the effects on population dynamics of increasing the asymmetric cannibalistic attack rate of a general insect species in different environmental conditions. We do this by theoretically formulating a generalized system of univoltine and bivoltine larvae over two generations in the spring and summer months. We predict that a lack of resources over the summer can force the population to become entirely univoltine, unless the second-generation bivoltine larvae increase their cannibalistic attack rate, and consume the diapausing pupae from the first generation. The model shows that under extreme environmental conditions, the persistence of univoltine larvae is favoured when faced with the threat of extinction. The model also predicts the conditions for the coexistence of both univoltine and bivoltine larvae, and the degree to which they can both coexist, which decreases as the resource in the second generation increases. This work provides the grounding for future theoretical and experimental consideration of the role of cannibalism in determining insect voltinism.  相似文献   

19.
Although most polistine wasp species are found in the Neotropical region, mainly in Brazil, only a very limited number of South American parasitoids or parasites are known to exist. We assessed the frequency of a hymenopterous parasitoid, Pachysomoides sp. (Ichneumonidae, Cryptinae), in the nests of the Brazilian independent‐founding wasp Polistes satan and compared the rates of the parasitization of P. satan by Pachysomoides sp. between the dry (winter) and wet (summer) seasons. Pachysomoides sp. larvae were seen to feed on P. satan pupa and were found in both the upper and lower parts of the host pupal cell (ca. 10 individuals in each host pupal cell). Approximately one‐third of the pupal cells in the P. satan colonies were parasitized in the dry season, whereas there were no parasitized pupal cells in the wet season. Consequently, the rates of parasitization by Pachysomoides sp. were significantly greater during the dry season than during the wet season due to unknown reasons.  相似文献   

20.
Leaf flushing during the dry season: the paradox of Asian monsoon forests   总被引:3,自引:0,他引:3  
Aim Most deciduous species of dry monsoon forests in Thailand and India form new leaves 1–2 months before the first monsoon rains, during the hottest and driest part of the year around the spring equinox. Here we identify the proximate causes of this characteristic and counterintuitive ‘spring‐flushing’ of monsoon forest trees. Location Trees of 20 species were observed in semi‐deciduous dry monsoon forests of northern Thailand with a 5–6‐month‐long severe dry season and annual rainfall of 800–1500 mm. They were growing on dry ridges (dipterocarp–oak forest) or in moist gullies (mixed deciduous–evergreen forest) at 680–750 m altitude near Chiang Mai and in a dry lowland stand of Shorea siamensis in Uthai Thani province. Methods Two novel methods were developed to analyse temporal and spatial variation in vegetative dry‐season phenology indicative of differences in root access to subsoil water reserves. Results Evergreen and leaf exchanging species at cool, moist sites leafed soon after partial leaf shedding in January–February. Drought‐resistant dipterocarp species were evergreen at moist sites, deciduous at dry sites, and trees leafed soon after leaf shedding whenever subsoil water was available. Synchronous spring flushing of deciduous species around the spring equinox, as induced by increasing daylength, was common in Thailand's dipterocarp–oak forest and appears to be prevalent in Indian dry monsoon forests of the Deccan peninsula with its deep, water‐storing soils. Main conclusions In all observed species leafing during the dry season relied on subsoil water reserves, which buffer trees against prolonged climatic drought. Implicitly, rainfall periodicity, i.e. climate, is not the principal determinant of vegetative tree phenology. The establishment of new foliage before the summer rains is likely to optimize photosynthetic gain in dry monsoon forests with a relatively short, wet growing season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号