首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The reddish-purple buds of the wild-type Japanese morning glory (Ipomoea nil) change into blue open flowers, and the shift in the flower coloration correlates with an increase in the vacuolar pH of the flower epidermal cell. In the mutant deficient in the InNHX1 gene for the vacuolar Na(+)/H(+) antiporter, the vacuolar alkalization occurs only partially, and reddish-purple buds become purple open flowers. While most of the plant NHX genes characterized are generally expressed in leaves, stems and roots and induced by NaCl treatment, the InNHX1 gene is expressed predominantly in the flower limbs at around 12 h before flower opening. It is expressed very sparsly in leaves, stems and roots, and no induction occurs in response to NaCl treatment. Here, we identified a novel vacuolar Na(+)/H(+) antiporter gene InNHX2, which is expressed in leaves, stems and roots and is induced in response to NaCl treatment. In addition, relatively higher expression of InNHX2 was observed in the flower limbs shortly before flower opening. We also discovered that both the InNHX1 and InNHX2 proteins can catalyze both Na(+) and K(+) transport into vacuoles. These results suggest that InNHX2 performs dual functions: to confer salt tolerance on the plant and to promote partial vacuolar alkalization in the petals. The implication is that the InNHX2 protein is probably one of the components responsible for converting reddish-purple buds into purple open flowers by partially increasing the vacuolar pH in the absence of major InNHX1 activity.  相似文献   

2.
The petal color of morning glory, Ipomoea tricolor cv. Heavenly Blue, changes from purplish red to blue during flower opening. This color change is caused by an unusual increase in vacuolar pH from 6.6 to 7.7 in the colored adaxial and abaxial cells. To clarify the mechanism underlying the alkalization of epidermal vacuoles in the open petals, we focused on vacuolar H+-ATPase (V-ATPase), H+-pyrophosphatase (V-PPase) and an isoform of Na+/H+ exchanger (NHX1). We isolated red and blue protoplasts from the petals in bud and fully open flower, respectively, and purified vacuolar membranes. The membranes contained V-ATPase, V-PPase and NHX1, which were immunochemically detected, with relatively high transport activity. NHX1 could be detected only in the vacuolar membranes prepared from flower petals and its protein level was the highest in the colored petal epidermis of the open flower. These results suggest that the increase of vacuolar pH in the petals during flower opening is due to active transport of Na+ and/or K+ from the cytosol into vacuoles through a sodium- or potassium-driven Na+(K+)/H+ exchanger NXH1 and that V-PPase and V-ATPase may prevent the over-alkalization. This systematic ion transport maintains the weakly alkaline vacuolar pH, producing the sky-blue petals.  相似文献   

3.
The major anthocyanin in blue morning glory flowers, peonidin 3-(dicaffeylsophoroside)- 5-glucoside, is stable in a neutral aqueous solution and is solely responsible for the color of the flowers. Co-ocurring flavonols based on quercetin at the pH's of epidermal cells have no effect on the color of the anthocyanin. Deep or strong reddish-purple buds change to moderate or light blue open flowers within a 4 hr period, and during this time the pH of epidermal tissue increases from ca 6.5 to 7.5.  相似文献   

4.
The mechanism of dusky reddish-brown "kaki" color development of morning glory, Ipomoea nil cv. Danjuro, was studied. Three major known anthocyanins were isolated as glucosylated pelargonidin derivatives. Measurement of the vacuolar pH with proton-selective microelectrodes revealed the vacuolar pH of the colored cell of open flowers to be 6.8, while that of buds was 5.8. Mixing of the three anthocyanins according to the composition ratio in petals at pH 6.8 allowed the identical color to that of petals to be reproduced. The typical "kaki" color development was mostly caused by 5-OH free acylated anthocyanins, which have two lambdamax around 435 and 535 nm in the visible region.  相似文献   

5.
Blue color in flowers is due mainly to anthocyanins, and a considerable part of blue coloration can be attributed to metal-complexed anthocyanins. However, the mechanism of metal ion transport into vacuoles and subsequent flower color development has yet to be fully explored. Previously, we studied the mechanism of blue color development specifically at the bottom of the inner perianth in purple tulip petals of Tulipa gesneriana cv. Murasakizuisho. We found that differences in iron content were associated with the development of blue- and purple-colored cells. Here, we identify a vacuolar iron transporter in T. gesneriana ( TgVit1 ), and characterize the localization and function of this transporter protein in tulip petals. The amino acid sequence of TgVit1 is 85% similar that of the Arabidopsis thaliana vacuolar iron transporter AtVIT1, and also showed similarity to the AtVIT1 homolog in yeast, Ca2+-sensitive cross-complementer 1 (CCC1). The gene TgVit1 was expressed exclusively in blue-colored epidermal cells, and protein levels increased with increasing mRNA expression and blue coloration. Transient expression experiments revealed that TgVit1 localizes to the vacuolar membrane, and is responsible for the development of the blue color in purple cells. Expression of TgVit1 in yeast rescued the growth defect of ccc1 mutant cells in the presence of high concentrations of FeSO4. Our results indicate that TgVit1 plays an essential role in blue coloration as a vacuolar iron transporter in tulip petals. These results suggest a new role for involvement of a vacuolar iron transporter in blue flower color development.  相似文献   

6.
7.
8.
9.
10.
The Japanese morning glory has an extensive history of genetic studies. Many mutants in the colors and shapes of its flowers and leaves have been isolated since the 17th century, and more than 200 genetic loci have been localized for the 10 linkage groups. They include over 20 mutable loci, several with variegated flower phenotypes. In a line of Japanese morning glory bearing variegated flowers called flecked, a transposable element of 6.4 kb, termed Tpn1, was found within one of the anthocyanin biosynthesis genes encoding dihydroflavonol-4-reductase (DFR). The 6.4-kb element carries 28-bp perfect terminal inverted repeats, the outer 13 bp being identical to those of the maize transposable element Suppressor-mutator/Enhancer. It is flanked by 3-bp direct repeats within the second intron of the DFR gene, 9 bp upstream of the third exon. When somatic and germinal excision occurs, it produces excision sequences characteristic of plant transposable elements. Cosegregation data of the variegated flower phenotype and the DFR gene carrying Tpn1 indicated that the mutable phenotype is due to excision of Tpn1 from the DFR gene. Sequences homologous to Tpn1 are present in multiple copies in the genome of Japanese morning glory.  相似文献   

11.
Intracellular Na(+)/H(+) (NHX) antiporters have important roles in cellular pH and Na(+), K(+) homeostasis. The six Arabidopsis thaliana intracellular NHX members are divided into two groups, endosomal (NHX5 and NHX6) and vacuolar (NHX1 to NHX4). Of the vacuolar members, NHX1 has been characterized functionally, but the remaining members have largely unknown roles. Using reverse genetics, we show that, unlike the single knockouts nhx1 or nhx2, the double knockout nhx1 nhx2 had significantly reduced growth, smaller cells, shorter hypocotyls in etiolated seedlings and abnormal stamens in mature flowers. Filaments of nhx1 nhx2 did not elongate and lacked the ability to dehisce and release pollen, resulting in a near lack of silique formation. Pollen viability and germination was not affected. Quantification of vacuolar pH and intravacuolar K(+) concentrations indicated that nhx1 nhx2 vacuoles were more acidic and accumulated only 30% of the wild-type K(+) concentration, highlighting the roles of NHX1 and NHX2 in mediating vacuolar K(+)/H(+) exchange. Growth under added Na(+), but not K(+), partly rescued the flower and growth phenotypes. Our results demonstrate the roles of NHX1 and NHX2 in regulating intravacuolar K(+) and pH, which are essential to cell expansion and flower development.  相似文献   

12.
In a series of previous studies, it has been shown that populations of the common morning glory Ipomoea purpurea are typically polymorphic for flower-color genes that bias pollinator service and, hence, the rate of outcrossing. In this study, we show that the rate of outcrossing for the white flower-color morph depends on its frequency in experimental populations of the morning glory. White flowers are visited less often by the primary pollinator, bumblebees, and have lower outcrossing rates than colored flowers when they are in the minority. In contrast, blue or pink flower morphs are not undervisited and do not have lowered outcrossing rates when they are rare. In plant populations where genes that increase selling are selectively favored due to their transmission bias, undervisitation of rare morphs may act to stabilize genetic variation for outcrossing rates.  相似文献   

13.
Flower color of soybean is primarily controlled by genes W1, W3, W4, Wm, and Wp. In addition, the soybean gene symbol W2, w2 produces purple-blue flower in combination with W1. This study was conducted to determine the genetic control of purple-blue flower of cultivar (cv). Nezumisaya. F(1) plants derived from a cross between Nezumisaya and purple flower cv. Harosoy had purple flowers. Segregation of the F(2) plants fitted a ratio of 3 purple:1 purple-blue. F(3) lines derived from F(2) plants with purple-blue flowers were fixed for purple-blue flowers, whereas those from F(2) plants with purple flowers fitted a ratio of 1 fixed for purple flower:2 segregating for flower color. These results indicated that the flower color of Nezumisaya is controlled by a single gene whose recessive allele is responsible for purple-blue flower. Complementation analysis revealed that flower color of Nezumisaya is controlled by W2. Linkage mapping revealed that W2 is located in molecular linkage group B2. Sap obtained from banner petals of cvs. with purple flower had a pH value of 5.73-5.77, whereas that of cvs. with purple-blue flower had a value of 6.07-6.10. Our results suggested that W2 is responsible for vacuolar acidification of flower petals.  相似文献   

14.
15.
Induction of some plant organs including tubers and flower buds begins with sensing environmental cues, such as photoperiod and temperature in the leaves. Theobroxide has been shown to induce potato tuberization and flower-bud formation in morning glory under non-inductive photoperiodic conditions, stimulating the activity of lipoxygenase (LOX) and the synthesis of jasmonic acid (JA). In the present study, the ability of theobroxide to overcome the inhibitory effect of unfavorable high temperature on the induction of tubers in potato and flower buds in morning glory was examined. Both tuber induction and flower-bud formation under non-inductive high temperatures were promoted by the application of theobroxide at a high concentration. However, although theobroxide treatment resulted in an increase in fresh weight during potato tuber growth at 30°C, morning glory plants treated with theobroxide at 35°C failed to bloom, implying that theobroxide may assist only in flower-bud formation.  相似文献   

16.
花色是植物吸引昆虫传播花粉的主要因素,对于植物在自然界的生存必不可少,也是观赏植物最重要的性状之一。在蓬勃发展的花卉产业中,色彩各异花卉的培育,可以弥补自然花色的匮乏,但是令人垂涎的蓝色花比较难培育。花色的多样性主要是由花青素及其衍生物的种类和含量等因素决定的,飞燕草色素的合成是形成蓝色花的关键因素,许多植物体内缺少合成飞燕草色素的结构基因。近年来,利用基因工程技术培育蓝色花的研究也时有报道。文中以常见的观赏植物为例,基于花青素代谢调控,从影响飞燕草色素合成的关键因素和不同分子改良途径培育蓝色花等几个方面对植物花朵呈色的机制进行了综述,并展示不同分子育种策略可能在其他领域的应用,为其他植物或经济作物的色泽改良如彩色棉蓝色纤维的培育等提供参考和技术支持。  相似文献   

17.
18.
19.
The entire flower of Tulipa gesneriana cv. Murasakizuisho is purple, except the bottom, which is blue. To elucidate the mechanism of the different color development in the same petal, we prepared protoplasts from the purple and blue epidermal regions and measured the flavonoid composition by HPLC, the vacuolar pH by a proton-selective microelectrode, and element contents by the inductively coupled plasma (ICP) method. Chemical analyses revealed that the anthocyanin and flavonol compositions in both purple and blue colored protoplasts were the same; delphinidin 3-O-rutinoside (1) and major three flavonol glycosides, manghaslin (2), rutin (3) and mauritianin (4). The vacuolar pH values of the purple and blue protoplasts were 5.5 and 5.6, respectively, without any significant difference. However, the Fe(3+) content in the blue protoplast was approximately 9.5 mM, which was 25 times higher than that in the purple protoplasts. We could reproduce the purple solution by mixing 1 with two equimolar concentrations of flavonol with lambda(vismax) = 539 nm, which was identical to that of the purple protoplasts. Furthermore, addition of Fe(3+) to the mixture of 1-4 gave the blue solution with lambda(vismax) = 615 nm identical to that of the blue protoplasts. We have established that Fe(3+) is essential for blue color development in the tulip.  相似文献   

20.
Flower buds of Pharbitis nil cut from plants growing in thefield open rapidly when subjected to darkness (20–25°C)or low temperature (20°C) in light. Petals of the buds arethe sites of photo- and thermo-perception; flower-opening iscaused mainly by the epinasty of petal midribs. 1Dedicated to Professor Dr. Erwin Bunning on the occasion ofhis 75th birthday. (Received October 23, 1980; Accepted December 15, 1980)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号