首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Alpha-1-antitrypsin from normal individuals (Pi type MM) from those with an inherited deficiency of circulatory protein (Pi type ZZ) were labelled with 125I and plasma clearance rates measured in rats either prior to, or following treatment with neuraminidase to remove terminal sialic acid residues. In addition, these proteins and the derivatives were tested for their ability to bind to an hepatic binding protein obtained from rabbit liver membranes that has been shown to be responsible for the clearance of serum asialoglycoproteins. Finally, the two native forms of alpha-1-antitrypsin were treated with galactose oxidase followed by reduction with tritiated potassium borohydride and then analyzed for tritium incorporation in the neutral sugar fraction. The results indicate: (a) clearance from plasma for both forms of alpha-1-antitrypsin is dramatically enhanced upon the loss of terminal sialic acid residues to the liver membrane protein; (b) Z protein does not exhibit terminal galactosyl residues; (c) the low level of Z protein in plasma cannot be accounted for by a faster rate of clearance relative to M protein. The relevance of these findings to the alpha-1-antitrypsin deficiency state are discussed.  相似文献   

2.
Time-resolved, steady-state fluorescence and fluorescence-detected circular dichroism (FDCD) have been used to resolve the fluorescence contributions of the two tryptophan residues, Trp-13 and Trp-85, in the cyclic AMP receptor protein (CRP). The iodide and acrylamide quenching data show that in CRP one tryptophan residue, Trp-85, is buried within the protein matrix and the other, Trp-13, is moderately exposed on the surface of the protein. Fluorescence-quenching-resolved spectra show that Trp-13 has emission at about 350 nm and contributes 76–83% to the total fluorescence emission. The Trp-85, unquenchable by iodide and acrylamide, has the fluorescence emission at about 337 nm. The time-resolved fluorescence measurements show that Trp-13 has a longer fluorescence decay time. The Trp-85 exhibits a shorter fluorescence decay time. In the CRP-cAMP complex the Trp-85, previously buried in the apoprotein becomes totally exposed to the iodide and acrylamide quenchers. The FDCD spectra indicate that in the CRP-cAMP complex Trp-85 remains in the same environment as in the protein alone. It has been proposed that the binding of cAMP to CRP is accompanied by a hinge reorientation of two protein domains. This allows for penetration of the quencher molecules into the Trp-85 residue previously buried in the protein matrix.Abbreviations CRP cyclic AMP receptor protein - NATA N-acetyltryptophanamide - FQRS fluorescence-quenching-resolved spectra - FDCD fluorescence-detected circular dichroism - EDTA ethylenediaminetetraacetic acid - SDS sodium dodecyl sulfate - FPLC fast protein liquid chromatography  相似文献   

3.
Pyridoxal kinase catalyses the phosphorylation of the vitamin B6. A human brain pyridoxal kinase cDNA was isolated, and the recombinant enzyme was overexpressed in E. coli as a fusion protein with maltose binding protein (MBP). Pure pyridoxal kinase exhibits a molecular mass of about 40 kDa when examined by SDS-PAGE and FPLC gel filtration. The recombinant enzyme is a monomer endowed with catalytic activity, indicating that the native quaternary structure of pyridoxal kinase is not a prerequisite for catalytic function. Zn2+ is the most effective divalent cation in the phosphorylation of pyridoxal, and the human enzyme has maximum catalytic activity in the narrow pH range of 5.5-6.0. The Km values for two substrates pyridoxal and ATP are 97 microM and 12 microM, respectively. In addition, the unfolding processes of the recombinant enzyme were monitored by circular dichroism. The values of the free energy change of unfolding (AGo = 1.2 kcal x mol(-1) x K(-1)) and the midpoint transition (1 M) suggested that the enzyme is more stable than ovine pyridoxal kinase against denaturation by guanidine hydrochloride. Intrinsic fluorescence spectra of the human enzyme from red-edge excitation and fluorescence quenching experiments showed that the tryptophanyl residues are not completely exposed and more accessible to neutral acrylamide than to the negatively charged iodide. The first complete set of catalytic and structural properties of human pyridoxal kinase provide valuable information for further biochemical studies on this enzyme.  相似文献   

4.
Fluorescence spectra of native pennisetin resulted in a single emission peak at 335 nm at excitation wavelength of 274 and 295 nm with quantum yield values for tyrosine and tryptophan as 0.086 and 0.097, respectively. These results indicate the presence of tryptophan residues in a polar environment and quenching of tyrosine residues in the native state of pennisetin. In the presence of an increasing concentration of guanidine hydrochloride (Gdn · HCl), changes such as red shift in emission peak from 335 to 344 nm, decrease in relative fluorescence intensity and increase in quantum yield value were observed, suggesting unfolding of the pennisetin molecule during denaturation. The quenching of tryptophanyl fluorescence by acrylamide and iodide further showed the presence of a single kind of tryptophanyl residue and its polar environment in pennisetin molecule.  相似文献   

5.
Time-resolved, steady-state fluorescence and fluorescence-detected circular dichroism (FDCD) have been used to resolve the fluorescence contributions of the two tryptophan residues, Trp-13 and Trp-85, in the cyclic AMP receptor protein (CRP). The iodide and acrylamide quenching data show that in CRP one tryptophan residue, Trp-85, is buried within the protein matrix and the other, Trp-13, is moderately exposed on the surface of the protein. Fluorescence-quenching-resolved spectra show that Trp-13 has emission at about 350 nm and contributes 76–83% to the total fluorescence emission. The Trp-85, unquenchable by iodide and acrylamide, has the fluorescence emission at about 337 nm. The time-resolved fluorescence measurements show that Trp-13 has a longer fluorescence decay time. The Trp-85 exhibits a shorter fluorescence decay time. In the CRP-cAMP complex the Trp-85, previously buried in the apoprotein becomes totally exposed to the iodide and acrylamide quenchers. The FDCD spectra indicate that in the CRP-cAMP complex Trp-85 remains in the same environment as in the protein alone. It has been proposed that the binding of cAMP to CRP is accompanied by a hinge reorientation of two protein domains. This allows for penetration of the quencher molecules into the Trp-85 residue previously buried in the protein matrix.  相似文献   

6.
The accessibility and localization of tryptophane residues in the influenza viral hemagglutinin molecule have been determined by measuring specific quenching of tryptophane fluorescence by neutral (acrylamide), anionic (I-) and cationic (Cs+) quenchers. It has been shown that acrylamide quenches 64% of tryptophane fluorescence in H3-hemagglutinin whereas I- and Cs+ quench only 34%. The tryptophanyl residues have been assumed to be located in the hemagglutinin molecule both in the cationic and anionic environments. 64% of tryptophanyls have been shown to be located on the surface of the protein globule.  相似文献   

7.
The conformation of native pertussis toxin has been investigated by secondary structure prediction and by circular dichroism, fluorescence and second-derivative ultraviolet absorption spectroscopy. The far-ultraviolet circular dichroic spectrum is characteristic of a protein of high beta-sheet and low alpha-helix content. This is also shown by an analysis of the circular dichroic spectrum with the Contin programme which indicates that the toxin possesses 53% beta-sheet, 10% alpha-helix and 37% beta-turn/loop secondary structure. Second-derivative ultraviolet absorption spectroscopy suggests that 34 tyrosine residues are solvent-exposed and quenching of tryptophan fluorescence emission has shown that 4 tryptophan residues are accessible to iodide ions. One of these tryptophans appears to be in close proximity to a positively charged side-chain, since only 3 tryptophans are accessible to caesium ion fluorescence quenching. When excited at 280 nm, the emission spectrum contains a significant contribution from tyrosine fluorescence, which may be a consequence of the high proportion (55%) of surface-exposed tyrosines. No changes in the circular dichroic spectra of the toxin were found in the presence of the substrate NAD. However, NAD did quench both tyrosine and tryptophan fluorescence emission but did not change the shape of the emission spectrum, or the accessibility of the tryptophans to either the ionic fluorescence quenchers or the neutral quencher acrylamide.  相似文献   

8.
Heparin cofactor II and antithrombin III are plasma proteins functionally similar in their ability to inhibit thrombin at accelerated rates in the presence of heparin. To further characterize the structural and functional properties of human heparin cofactor II as compared to antithrombin III, we studied the possible significance of arginyl and tryptophanyl residues and the changes in protein structure and activity during guanidinium chloride (GdmCl) denaturation. Both antithrombin and heparin cofactor activities of heparin cofactor II are inactivated by the arginine-specific reagent, 2,3-butanedione. Saturation kinetics are observed during modification and suggest formation of a reversible protease inhibitor-butanedione complex. Quantitation of arginyl residues following butanedione modification shows a loss of about four residues for total inactivation, one of which is essential for antithrombin activity. Arginine-modified heparin cofactor II did not bind to heparin-agarose and implies a role for the other modified arginyl residues during heparin cofactor activity. N-Bromosuccinimide oxidation (20 mol of reagent/mol of protein) of heparin cofactor II results in modification of approximately two tryptophanyl residues with no concomitant loss of heparin cofactor activity. Moreover, there is no enhancement of intrinsic protein fluorescence during heparin binding to the native inhibitor. Circular dichroism measurements show that the structural transition of heparin cofactor II during denaturation is distinctly biphasic, yielding midpoints at 0.6 and 2.6 M GdmCl. Functional protease inhibitory activities are affected to the same extent following denaturation-renaturation at various GdmCl concentrations. The results indicate that arginyl residues are critical for both antithrombin and heparin binding activities. In contrast, tryptophanyl residues are apparently not essential for heparin-dependent interactions. The results also suggest that heparin cofactor II contains two structural domains which unfold at different GdmCl concentrations.  相似文献   

9.
Low concentrations of urea (1.2 M) stimulated the activity of endo-xylanase from Chainia by 30%. Subtle structural changes in the monomeric protein were reflected in the secondary and tertiary structure of the enzyme as monitored by fluorescence and circular dichroism. Changes in lambda(max) of emission, the fluorescence intensity and the Stern-Volmer quenching constants for acrylamide, measured in the presence of urea, indicated changes in the microenvironment of the Trp residues, suggesting alterations in tertiary structure. The ellipticity changes at 220 nm and Selcon analysis reflected changes in the content of beta-sheet while both the near- and far-UV CD spectra indicated alterations in the secondary and tertiary structure of the protein in presence of urea. The dissociation constant values (K(d)) show very little change in the affinity of the enzyme for the substrate while the k(cat) values suggest enhanced turnover of the substrate in presence of urea. We suggest that low urea concentrations perturb the conformational state of xylanase leading to an open and a more flexible structure, resulting in enhanced catalytic rates.  相似文献   

10.
The quenching of tryptophanyl fluorescence of native and denatured D-amino acid oxidase from hog kidney was measured. About 60% of the tryptophanyl fluorescence of the native apoenzyme was quenched by iodide at pH 8.3, and 25 degrees C. All of the tryptophanyl fluorescence of the apoenzyme in 6 M guanidine hydrochloride was quenched. The tryptophanyl fluorescence quenching of the holoenzyme by 1-methyl nicotinamide chloride was low in comparison with that of the apoenzyme. These results of the quenching experiments are discussed based on the intermolecular collision quenching mechanism. By measuring the fluorescence intensities of the tryptophanyl residues and FAD of the holoenzyme solution, and the fluorescence polarization of the holoenzyme solution containing halide anions such as iodide, bromide, chloride, or fluoride, we found that FAD dissociates from the holoenzyme in the presence of iodide, bromide, or chloride, and the ability to dissociate FAD from the holoenzyme decreases in order iodide, bromide, and chloride. However, fluoride seems to enhance the association reaction of FAD with the apoenzyme. These results were consistent with the visible absorption spectra and derivative spectra of free FAD and the holoenzyme in the presence and absence of halide anions.  相似文献   

11.
The abnormal type of alpha 1-antitrypsin, PI (protease inhibitor) type Z, is associated with inclusion bodies in the liver, which contain non-secreted alpha 1-antitrypsin. Our studies show that Z protein has an inherent tendency to aggregate, even in plasma. Depending upon conditions, from 15 to 70% of the Z protein in plasma was in a high-Mr form, compared with 1.5% of M type alpha 1-antitrypsin. The high-Mr complex in plasma cannot be disaggregated using Triton X detergent or reducing conditions. This increased tendency to aggregate can be explained by the mutation affecting, tertiary structure and salt bridge formation in Z protein. We have observed this same tendency to aggregate for Mmalton alpha 1-antitrypsin, a rarer variant also associated with a plasma deficiency.  相似文献   

12.
The reactive thiol Cys-697 (SH2) in myosin ATPase was labeled with a fluorescent analog of maleimide, 2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid (MIANS) (Hiratsuka, T. (1992) J. Biol. Chem. 267, 14941-14948). Although the tryptophan fluorescence of myosin subfragment-1 (S-1) was slightly affected by incorporation of the MIANS fluorophore, the tryptophan fluorescence of the resultant S-1 derivative (MIANS-S-1) was enhanced by ATP in a manner similar to that of unlabeled S-1. The quenching of tryptophan fluorescence of MIANS-S-1 was shown to result from a transfer of the excitation energy from tryptophanyl residue(s) to the MIANS fluorophore attached to SH2, which absorbed and fluoresced maximally at 325 and 418 nm, respectively. The energy transfer measurements were performed in the presence of acrylamide and compared to those performed in the absence of the quencher. The energy transfer efficiencies were found to be unaltered by acrylamide, indicating that the observed fluorescence energy transfer is originated exclusively from the tryptophanyl residue(s) that are not affected by acrylamide, i.e. the ATP-sensitive tryptophanyl residue(s) of S-1 (Torgerson, P. M. (1984) Biochemistry 23, 3002-3007). The distance between the tryptophanyl residue(s) and Cys-697 was calculated to be 27 A assuming a single donor-acceptor pair. Trp-510 is proposed to be one of the ATP-sensitive tryptophanyl residues.  相似文献   

13.
Acrylamide is a fluorescence quencher frequently applied for analysis of protein fluorophores exposure with the silent assumption that it does not affect the native structure of protein. In this report, it is shown that quenching of tryptophan residues in aldolase is a time-dependent process. The Stern-Volmer constant increases from 1.32 to 2.01 M-1 during the first 100 s of incubation of aldolase with acrylamide. Two tryptophan residues/subunit are accessible to quenching after 100 s of aldolase interaction with acrylamide. Up to about 1.2 M acrylamide concentration enzyme inactivation is reversible. Independent analyses of the changes of enzyme activity, 1ANS fluorescence during its displacement from aldolase active-site, UV-difference spectra and near-UV CD spectra were carried out to monitor the transition of aldolase structure. From these measurements a stepwise transformation of aldolase molecules from native state (N) through intermediates: I1, T, I2, to denatured (D) state is concluded. The maxima of I1, T, I2 and D states populations occur at 0.2, 1.0, 2.0 and above 3.0 M of acrylamide concentration, respectively. Above 3.5 M, acrylamide aldolase molecules become irreversibly inactivated.  相似文献   

14.
Lipase from Pseudomonas cepacia was made soluble in 1,4‐dioxane by lyophilization of the enzyme from aqueous solutions containing methoxypoly(ethylene glycol) (PEG). The solubility of the enzyme–PEG complex depended both on protein concentration and PEG protein ratio. Intrinsic protein fluorescence and far‐ and near‐UV circular dichroism revealed that not only did the enzyme not unfold in the organic solvent, but rather became more compact. This was seen by the slight quenching of fluorescence intensity and by the enhancement of the near‐UV circular dichroism negative signals, which are indicative of stronger interactions of tryptophanyl and/or tyrosyl residues among themselves or with other parts of the enzyme molecule. The specific activity of the lipase–PEG complex in the organic solvent was at least 2 orders of magnitude higher than that of the enzyme powder. This can be attributed both to the maintenance of native conformation and to enzyme dissolution in the reaction medium which should minimize possible limitations to enzyme–substrate interactions. © 1999 John Wiley & Sons, Inc., Biotechnol Bioeng 64: 624–629, 1999.  相似文献   

15.
Ligand-induced conformational changes in cytosolic protein kinase C   总被引:1,自引:0,他引:1  
The changes in intrinsic spectral properties of protein kinase C were monitored upon association with its divalent cation and lipid activators in a model membrane system. The enzyme demonstrated changes in both its intrinsic fluorescence and far ultraviolet circular dichroism spectra upon association with lipid vesicles in the absence of calcium. The acidic phospholipid, phosphatidylserine, significantly quenched the intrinsic tryptophan fluorescence and was also the most potent lipid support for the phosphorylating activity of the enzyme. The enzyme was fully activated by a number of Ca2(+)-lipid combinations which correlated with maximal fluorescence quenching (40-50%) of available tryptophan residues in hydrophobic domains. The circular dichroism structure of the associated active-protein Ca2(+)-lipid complexes suggested different active enzyme secondary structures. However, the Ca2(+)-dependent changes in fluorescence and circular dichroism spectra were observed only after the enzyme associated with the lipid vesicles. These data suggest that protein kinase C has the properties of a complex multidomain protein and provides an additional perspective into the mechanism of protein kinase C activation.  相似文献   

16.
Comparative structural analysis of staphylococcal enterotoxins A and E   总被引:1,自引:0,他引:1  
Structural analysis of staphylococcal enterotoxins A and E, two functionally and serologically related proteins, has been carried out using circular dichroism, and tryptophan fluorescence quantum yield and quenching. Secondary structures derived from the far-UV circular dichroic spectra revealed that both enterotoxins are in predominantly beta-sheets/beta-turn structures (80-85%). Staphylococcal enterotoxin A has significantly higher alpha-helical content (10.0%) than staphylococcal enterotoxin E (6.5%). Tryptophan fluorescence spectra of both enterotoxins showed maxima at approximately 342 nm, indicating that the fluorescent tryptophan residues are in polar environments. However, the tryptophan fluorescence quantum yields indicated that tryptophan residues are approximately 41% more fluorescent in staphylococcal enterotoxin A than in staphylococcal enterotoxin E. Tryptophan fluorescence quenching by a surface quencher, I-, and a neutral quencher, acrylamide, indicated that at least 1 of the 2 tryptophan residues in both staphylococcal enterotoxins A and E is located on the outer surface of the proteins. This tryptophan residue is in significantly different environments in the two enterotoxins. Six antigenic sites are predicted from the hydrophilicity and secondary structure information; at least four sites are identical. In general, staphylococcal enterotoxins A and E have some structural similarities which are compatible with their common biological activities.  相似文献   

17.
The interaction of meso-tetrakis(p-sulfonatophenyl)porphyrin (TSPP) sodium salt to human serum albumin and beta-lactoglobulin was studied by steady-state and dynamic fluorescence at different pH of aqueous solutions. The formation of TSPP J-aggregates and a noncovalent TSPP-protein complex was monitored by fluorescence titrations, which depend on pH and on the protein nature and concentration. The complex between TSPP and protein displays a heterogeneous equilibrium with large changes in the binding strength versus pH. The large reduction of the effective binding constant from pH 2 to 7 suggests that electrostatic interactions are a major contribution to the binding of TSPP to the aforementioned proteins. TSPP aggregates and TSPP-protein complex exhibit circular dichroism induced by the presence of the protein. Circular dichroism spectra in the ultraviolet region show that the secondary structure of both proteins is not extensively affected by the TSPP presence. Protein-TSPP interaction was also examined by following the intrinsic fluorescence of the tryptophan residues of the proteins. Fluorescence quenching by acrylamide and TSPP itself also point to small changes on the protein tertiary structure and a critical distance R(0) approximately 56 A, between tryptophan and bound porphyrin, was estimated using the long distance F?rster-type energy transfer formalism.  相似文献   

18.
The tryptophan intrinsic fluorescence of mitochondrial complex III reconstituted in phosphatidylcholine bilayers was examined at different temperatures. Absorption and emission maxima occur at 277 and 332 nm, irrespective of temperature or lipid:protein ratio even if there are indications (from fluorescence quenching) of protein conformational changes as a function of lipid:protein ratio. Low values of Trp fluorescence quantum yield in complex III (0.008-0.010) are probably due to the neighborhood of the heme groups. The temperature-dependent decrease of fluorescence intensity is nonlinear; the corresponding Arrhenius plots show "breaks" or discontinuities that could be interpreted as thermally dependent changes in protein conformation. However, no temperature-dependent changes in fluorescence quenching have been observed that may be related to protein conformational changes. In addition, Arrhenius plots of the fluorescence intensity of simple molecules, such as Trp or 1-anilino-8-naphthalene sulfonate in the presence of aqueous phospholipid dispersions, also show breaks in the same temperature range. Stern-Volmer plots of acrylamide and iodide quenching were also nonlinear, indicating large differences in quenching constants for the various tryptophanyl residues. The quenching results also suggest that, at high lipid:protein ratios, the microviscosity of the protein matrix is higher than that in lipid-poor systems. Comparison of quenching efficiencies of iodide and acrylamide suggest that no significant fraction of the fluorophores occurs in the neighborhood of charged residues.  相似文献   

19.
Bothopstoxin-I (BthTX-I) is a homodimeric Lys49-PLA2 homologue from the venom of Bothrops jararacussu in which a single Trp77 residue is located at the dimer interface. Intrinsic tryptophan fluorescence emission (ITFE) quenching by iodide and acrylamide has confirmed that a dimer to monomer transition occurs on reducing the pH from 7.0 to 5.0. Both the monomer and the dimer showed an excitation wavelength-dependent increase in the fluorescence emission maximum, however the excitation curve of the dimer was blue-shifted with respect to the monomeric form. No differences in the absorption or circular dichroism spectra between pH 5.0 and 7.0 were observed, suggesting that this curve shift is due neither to altered electronic ground states nor to exciton coupling of the Trp residues. We suggest that fluorescence resonance energy homotransfer between Trp77 residues at the BthTX-I dimer interface results in excitation of an acceptor Trp population which demonstrates a red-shifted fluorescence emission.  相似文献   

20.
Y H Huang  C W Luo  L C Yu  S T Chu    Y H Chen 《Biophysical journal》1995,69(5):2084-2089
The protein conformation of a mouse seminal vesicle autoantigen was studied by circular dichroism spectroscopy. At pH 7.4, the spectrum in the UV region appears as one negative band at 217 nm and one positive band at 200 nm. This together with the predicted secondary structures indicates no helices but a mixture of beta form, beta turn, and unordered form in the protein molecule. The conformation is stable even at pH 10.5 or 3.0. The spectrum in the near-UV region consists of fine structures that are disturbed in acidic or alkaline solution. The environments around Trp2 and Trp82 of this protein were studied by intrinsic fluorescence and solute quenching. They give an emission peak at 345 nm, and about 87% of them are accessible to quenching by acrylamide. Correlating the quenching effect of CsCl and Kl on the protein fluorescence to the charged groups along the polypeptide chain suggests the difference in the "local charge" around the two tryptophan residues. The presence of ZnCl2 in the protein solution effects no change in the circular dichroism but perturbs the fluorescence due to Trp82. Analysis of the fluorescence data suggests a Zn(2+)-binding site on the protein, which cannot coordinate with both Ca2+ and Mg2+. The association constant for the complex formation is 1.35 x 10(5) +/- 0.04 x 10(5) M-1 at pH 7.4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号