首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human rTNF-alpha stimulates the metabolism of murine peritoneal macrophages as demonstrated by an increased consumption of arginine and an increased release of L-ornithine. This TNF-mediated effect is augmented by several substances that raise the intracellular concentration of cAMP, including PGE2, cholera toxin, and dibutyryl-cAMP. TNF also stimulates the endogenous production of PGE2 in cultures of peritoneal macrophages. The addition of the cyclo-oxygenase inhibitor, indomethacin, suppresses the TNF-mediated metabolic activation of macrophages, and this suppressive effect of indomethacin is overcome if exogenous PGE2 or cholera toxin is added to the culture. Taken together, the experiments indicate that the TNF-induced production of PGE2 and the PGE2-induced increase of the intracellular cAMP concentration are essential elements of an auto-regulatory loop that controls the magnitude of the TNF-mediated effect in the macrophage.  相似文献   

2.
The prostaglandin endoperoxide PGH2, HHT, HETE, thromboxane A2, and thromboxane B2, which are all products of arachidonic acid metabolism of human platelets, were tested for their ability to modulate platelet cyclic nucleotide levels. None of the compounds tested altered the basal level of cAMP or cGMP, and only PGH2 and thromboxane A2 inhibited PGE1-stimulated cAMP accumulation. Thromboxane A2 was found to be a more potent inhibitor of PGE1-stimulated cAMP accumulation and inducer of platelet aggregation than PGH2.  相似文献   

3.
Tectorigenin and tectoridin, isolated from the rhizomes of Korean Belamcanda chinensis (Iridaceae) which are used as Chinese traditional medicine for the treatment of inflammation, suppressed prostaglandin E2 production by rat peritoneal macrophages stimulated by the protein kinase C activator, 12-O-tetradecanoylphorbol 13-acetate (TPA), or the endomembrane Ca2+-ATPase inhibitor, thapsigargin. Tectorigenin inhibited prostaglandin E2 production more potently than tectoridin. Neither compound inhibited the release of radioactivity from [3H]arachidonic acid-labeled macrophages stimulated by TPA or thapsigargin. In addition, activities of isolated cyclooxygenase (COX)-1 and COX-2 were not inhibited by the two compounds. Western blot analysis revealed that the induction of COX-2 by TPA or thapsigargin was inhibited by the two compounds in parallel with the inhibition of prostaglandin E2 production. These findings suggest that one of the mechanisms of the anti-inflammatory activities of the rhizomes of Belamcanda chinensis is the inhibition of prostaglandin E2 production by tectorigenin and tectoridin due to the inhibition of the induction of COX-2 in the inflammatory cells.  相似文献   

4.
Microsomal prostaglandin E synthase (mPGES)-1, which is dramatically induced in macrophages by inflammatory stimuli such as lipopolysaccharide (LPS), catalyzes the conversion of cyclooxygenase-2 (COX-2) reaction product prostaglandin H(2) (PGH(2)) into prostaglandin E(2) (PGE(2)). The mPGES-1-derived PGE(2) is thought to help regulate inflammatory responses. On the other hand, excess PGE(2) derived from mPGES-1 contributes to the development of inflammatory diseases such as arthritis and inflammatory pain. Here, we examined the effects of liver X receptor (LXR) ligands on LPS-induced mPGES-1 expression in murine peritoneal macrophages. The LXR ligands 22(R)-hydroxycholesterol (22R-HC) and T0901317 reduced LPS-induced expression of mPGES-1 mRNA and mPGES-1 protein as well as that of COX-2 protein. However, LXR ligands did not influence the expression of microsomal PGES-2 (mPGES-2) or cytosolic PGES (cPGES) protein. Consequently, LXR ligands suppressed the production of PGE(2) in macrophages. These results suggest that LXR ligands diminish PGE(2) production by inhibiting the LPS-induced gene expression of the COX-2-mPGES-1 axis in LPS-activated macrophages.  相似文献   

5.
We recently showed that murine peritoneal macrophages cultured in vitro express potent prothrombinase activity (Lindahl, U., Pejler, G., B?gwald, J., and Seljelid, R. (1989) Arch. Biochem. Biophys. 273, 180-188). In the present report, we demonstrate that the macrophages also express anticoagulant activity by inactivating the thrombin that is formed due to the action of the prothrombinase. Addition of exogenous purified thrombin to the macrophage cultures resulted in inactivation of the enzyme at a maximum rate of approximately 5 micrograms/h/10(6) cells. The inactivation appeared to be specific for thrombin, since neither Factor Xa, chymotrypsin, nor trypsin, three serine proteases exhibiting homology with thrombin, were inactivated by the macrophages. Thrombin-inactivating activity was not secreted into the culture medium. Inhibitors of endocytosis did not decrease the rate by which thrombin was inactivated, suggesting that internalization of the coagulation factor was not required. In contrast, the thrombin-inactivating activity was strongly inhibited by the polycation Polybrene. Anion-exchange chromatography of extracts obtained after Triton X-100-solubilization of the macrophages demonstrated that the thrombin-inactivating activity exhibited a high negative charge. Incubation of the thrombin-inactivating activity recovered after anion-exchange chromatography with unlabeled thrombin, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, showed that thrombin was proteolytically cleaved into defined fragments. Similar proteolytic fragments were obtained when 125I-labeled thrombin was added to macrophage cultures. Degradation of thrombin was blocked by phenylmethanesulfonic fluoride, an inhibitor of serine proteases, but not by inhibitors of other classes of proteases. Thrombin that had been chemically modified at its active site was degraded at the same rate by the macrophages as active thrombin. Taken together, these findings indicate that the murine macrophages express surface-bound serine protease activity that specifically inactivates thrombin by proteolytic cleavage. The significance of thrombin-inactivating activity in relation to the involvement of macrophage procoagulant activity in the immune response is discussed.  相似文献   

6.
The fate of bacterial lipopolysaccharide (LPS) after the uptake of Escherichia coli by macrophages in vitro was studied. The LPS of the galactose epimerase-deficient E. coli J5 mutant was specifically radiolabeled with [3H]galactose by growing the organism in a basic salts medium containing galactose. Control bacteria were uniformly radiolabeled by growth in [14C]glucose and unlabeled galactose-containing medium. Surface constituents of E. coli were also labeled with 125I. After in vitro phagocytosis of labeled E. coli by murine peritoneal exudate macrophages, the rate of exocytosis of LPS, as assessed by release of 3H over a 72-hr period, was considerably reduced in comparison with other bacterial constituents (14C and 125I release). The [3H]galactose-labeled material exocytosed from macrophages and that remaining intracellularly (obtained from macrophage lysates) were isolated by cesium chloride (CsCl) density gradients and were shown to have altered density profiles as compared with purified E. coli LPS. The macrophage-"processed" [3H] galactose-containing fractions from CsCl density gradients of culture supernatants or macrophage lysates were capable of clotting Limulus amebocyte lysate. The [3H]galactose material obtained from 48-hr macrophage lysates and culture supernatants could also induce a lethal response in actinomycin D-treated mice. These data suggest that bacterial LPS may be selectively retained by the macrophage and that the post-phagocytic events that result in bacterial degradation are not accompanied by the degradation of LPS. Furthermore, although the LPS may be modified by the macrophage, it retains its biologic activity.  相似文献   

7.
Synthesis of prostaglandin E by peritoneal macrophages from NZB/W mice   总被引:1,自引:0,他引:1  
Peritoneal macrophages from NZB/W (murine lupus) mice spontaneously produce less prostaglandin E (PGE) than peritoneal macrophages from immunologically normal mice. Reduced PGE synthesis is seen as early as 2 months of age and becomes more profound as disease progresses. It is suggested that impaired production of PGE by peritoneal macrophages from NZB/W mice may account in part for abnormal macrophage function observed in these animals.  相似文献   

8.
Murine macrophages (RAW 264.7) when stimulated with LPS show 90% distribution of cyclooxygenase-2 (COX-2) in the nuclear fraction and approximately 10% in the cytosolic fraction. Further analysis of this cytosolic fraction at 100,000 x g indicates that the COX-2 is distributed both in the 100,000 x g soluble fraction and membrane fraction. Stimulation of RAW 264.7 cells with LPS in the presence of inducible nitric oxide synthase inhibitor L-NMMA at concentrations that inhibit nitrite accumulation by /=85% with higher concentrations of L-NMMA shows 1) up-regulation of PGE2 production, 2) accumulation of COX-2 protein in the 100,000 x g soluble and membrane fractions of the cytosolic fraction, and 3) with no significant effects on the accumulation of COX-2 mRNA. These experiments suggest that low concentrations of nitric oxide (10-15% of the total) attenuate PGE2 production in response to LPS in RAW 264.7 cells. This inhibition is, in part, due to decreased expression of cytosolic COX-2 protein.  相似文献   

9.
Groups of rats were pretreated with 4-week diets containing 12.5% corn oil or linseed oil. At the end of this period peritoneal macrophages were elicited and isolated. These cells were used for binding experiments with 3H-PGE2 and for estimation of prostaglandin-stimulated cAMP production. Specific binding of 3H-PGE2 was saturable, reversible, protein-dependent, and correlated with stimulation of cAMP production, indicating that specific binding referred to receptor binding. PGE1 and PGI2 were far less effective than PGE2 in competition of binding with 3H-PGE2, indicating receptor selectivity for PGE2. Scatchard analysis of the specific binding data revealed a high affinity component (Kd 17 nM) and low affinity component. The total number of high- and low-affinity binding sites, respective Kd values, and PG stimulation of cAMP production of cells from rats fed the linseed oil diet were comparable to controls. The corn oil diet, however, resulted in a twofold increase in total number of high- and low-affinity binding sites, while respective Kd values were unchanged. This enhancement of binding capacity could be explained by an increased density of binding sites on the cells, and may itself be responsible for the increased sensitivity of the macrophages in this diet group for PG-stimulated cAMP production. The data suggest a regulatory mechanism at the receptor level and are discussed in terms of possible altered bioavailability of arachidonic acid-derived PGE2.  相似文献   

10.
The expression and regulation of the PGE receptors, EP(2) and EP(4), both of which are coupled to the stimulation of adenylate cyclase, were examined in peritoneal resident macrophages from C3H/HeN mice. mRNA expression of EP(4) but not EP(2) was found in nonstimulated cells, but the latter was induced by medium change alone, and this induction was augmented by LPS. mRNA expression of EP(4) was down-regulated by LPS but not by medium change. PGE(2) increased the cAMP content of both LPS-treated and nontreated cells. ONO-604, an EP(4) agonist, also increased cAMP content in nonstimulated cells and in cells treated with LPS for 3 h, but not for 6 h. Butaprost, an EP(2) agonist, was effective only in the cells treated with LPS for 6 h. The inhibitory effects of ONO-604 on TNF-alpha and IL-12 production were equipotent with PGE(2) at any time point, but the inhibitory effects of butaprost were only seen from 14 h after stimulation. PGE(2) or dibutyryl cAMP alone, but not butaprost, reduced EP(4) expression, and indomethacin reversed the LPS-induced down-regulation of EP(4), indicating that the down-regulation of EP(4) is mediated by LPS-induced PG synthesis and EP(4) activation. Indeed, when we used C3H/HeJ (LPS-hyporesponsive) macrophages, such reduction in EP(4) expression was found in the cells treated with PGE(2) alone, but not in LPS-treated cells. In contrast, up-regulation of EP(2) expression was again observed in LPS-treated C3H/HeJ macrophages. These results suggest that EP(4) is involved mainly in the inhibition of cytokine release, and that the gene expression of EP(2) and EP(4) is differentially regulated during macrophage activation.  相似文献   

11.
The purpose of this study was to elucidate the role of NO and O-2 on enzymatic components of cyclooxygenase (COX) pathway in peritoneal macrophages. Activation of murine peritoneal macrophages by lipopolysaccharides (LPS) resulted in time-dependent production of nitric oxide (NO) and prostaglandin E2 (PGE2). This stimulation was also accompanied by the production of other reactive oxygen species such as superoxide (O-2), and by increased expression of COX-2. Our results provide evidence that O-2 may be involved in the pathways that result in arachidonate release and PGE2 formation by COX-2 in murine peritoneal macrophages stimulated by LPS. However, we were not able to demonstrate that NO participates in the regulation of PG production under our experimental conditions.  相似文献   

12.
The purpose of this study was to elucidate the role of NO and O-2 on enzymatic components of cyclooxygenase (COX) pathway in peritoneal macrophages. Activation of murine peritoneal macrophages by lipopolysaccharides (LPS) resulted in time-dependent production of nitric oxide (NO) and prostaglandin E2 (PGE2). This stimulation was also accompanied by the production of other reactive oxygen species such as superoxide (O-2), and by increased expression of COX-2. Our results provide evidence that O-2 may be involved in the pathways that result in arachidonate release and PGE2 formation by COX-2 in murine peritoneal macrophages stimulated by LPS. However, we were not able to demonstrate that NO participates in the regulation of PG production under our experimental conditions.  相似文献   

13.
Esculentoside A (EsA) is a saponin isolated from the roots of Phytolacca esculenta. Previous experiments have shown that it has strong antiinflammatory effects. To investigate the mechanism of anti-inflammatory effects of esculentoside A (EsA),[(3)H] arachidonic acid (AA) prelabelled murine macrophage and radioimmunoassay were used to test the effect of EsA on the total release of AA and prostaglandin E(2) in culture supernatants. The results showed that EsA had no significant effect on the total release of AA from murine macrophages. EsA (2.5-10 mumol/l), from unstimulated murine peritoneal macrophages and rabbit synovial cells, could decrease the production of prostaglandin E(2). In A(23187) and LPS-treated macrophages and synovial cells, EsA (10 mumol/l) could significantly decrease the prostaglandin E(2) production. These results confirmed that EsA exerted an inhibitory effect on prostaglandin E(2) production from murine macrophages and rabbit synovial cells.  相似文献   

14.
When murine peritoneal macrophages were stimulated for 30 min with arachidonic acid, the growth-associated immediate early gene c-fos was induced in a concentration-dependent manner as assessed by Northern blot analysis. The arachidonic acid-induced c-fos mRNA expression was inhibited by a cyclooxygenase inhibitor, indomethacin, but not by a lipoxygenase inhibitor, nordihydroguaiaretic acid. Macrophages produced prostaglandin (PG) E(2) from arachidonic acid as determined by an enzyme immunoassay. Northern blot analysis revealed the expression of PGE receptor EP2 and EP4 subtypes, but not EP1 and EP3 in murine macrophages. PGE(2) brought about a marked elevation of cAMP, and c-fos mRNA expression was increased by PGE(2) and dibutyryl cAMP in these cells. These results suggest that arachidonic acid is transformed to PGE(2), which then binds to EP2 and EP4 receptors to increase intracellular cAMP and c-fos mRNA expression. Furthermore, the induction of c-fos by arachidonic acid, PGE(2), and cAMP was suppressed by pretreatment with interleukin (IL)-4. We also showed that the tyrosine phosphorylation of a Janus kinase, JAK3, is enhanced by IL-4 treatment, suggesting that the PGE(2)-mediated c-fos mRNA induction is inhibited by IL-4 through the tyrosine phosphorylation of JAK3.  相似文献   

15.
Yogesh Dahiya 《FEBS letters》2010,584(19):4227-4232
Many extracellular stimuli, e.g. microbial products, cytokines etc., result in the expression of inducible nitric oxide synthase (iNOS) in macrophages. However, it is not known whether expression of the iNOS gene in response to microbial products is a primary response of macrophages, or is the result of paracrine/autocrine signalling induced by endogenous biomolecules that are synthesised as a result of host cell-microbe interaction. In this paper we demonstrate that iNOS expression in mouse peritoneal macrophages in response to bacterial peptidoglycan (PGN) is a secondary effect requiring autocrine signalling of endogenously produced prostaglandin E2, and that PGN stimulation is mandatory, but not sufficient in itself, for induction of iNOS expression.  相似文献   

16.
17.
18.
We cloned the cDNA for mouse microsomal prostaglandin (PG) E synthase-1 (mPGES-1) and expressed the recombinant enzyme in Escherichia coli. The membrane fraction containing recombinant mPGES-1 catalyzed the isomerization of PGH2 to PGE2 in the presence of GSH with K(m) values of 130 microM for PGH2 and 37 microM for GSH, a turnover number of 600 min(-1), and a k(cat)/K(m) ratio of 4.6 min(-1) microM(-1). Recombinant mPGES-1 was purified and used to generate a polyclonal antibody highly specific for mPGES-1. The antibody showed a single band on Western blotting of microsomal fractions from lipopolysaccharide-treated mouse peritoneal macrophages. Northern and Western blotting analyses revealed that mPGES-1 was induced together with cyclooxygenase-2 in mouse macrophages after treatment of the cells with lipopolysaccharide. Confocal immunofluorescence microscopy revealed that both mPGES-1 and cyclooxygenase-2 were colocalized in the lipopolysaccharide-treated macrophages. Taken together, these results demonstrate that mPGES-1 is an efficient downstream enzyme for the production of PGE2 in the activated macrophages treated by lipopolysaccharide.  相似文献   

19.
The secretion of tumor necrosis factor (TNF) by macrophages is initiated by lipopolysaccharide (LPS); considerable evidence indicates that such secretion can be potentiated by interferon-gamma (IFN-gamma). The present studies show that accumulation of mRNA for tumor necrosis factor, which represents an important regulatory focus for controlling secretion of TNF, is enhanced by physiologic doses of IFN-gamma (20 units/ml of purified recombinant IFN-gamma). mRNA for TNF induced by LPS, which was maximal 2 hr after LPS was applied to the cells, was enhanced 5- to 8-fold by IFN-gamma as determined by Northern blot analysis. Interferon did not change the kinetics of accumulation but did change the dose effects of LPS in that increasing amounts of LPS led to increasing amounts of TNF mRNA in IFN-gamma-treated macrophages. IFN-gamma itself, however, did not induce expression of TNF mRNA. These studies document that IFN-gamma potentiates the cytoplasmic accumulation of mRNA for TNF induced in murine peritoneal macrophages by LPS.  相似文献   

20.
LPS and lipid A initiated enhanced hydrolysis of PIP2 in macrophages. When murine peritoneal macrophages were labeled with [2-3H]myoinositol and stimulated with either LPS or lipid A, a rapid (within 10 sec) rise in Ins(1,4,5)P3 was observed. The breakdown pattern of Ins(1,4,5)P3 was complex; this included breakdown of Ins(1,4,5)P3 and formation of Ins(1,3,4,5)P4 (approximately 10 to 30 sec), and ultimately formation of Ins(1,3,4)P3 (approximately 60 sec). Within 10 sec after treatment, LPS caused an average increase of about fourfold to fivefold in Ins(1,4,5)P3, which declined over 5 min. When the total isomers of InsP3 were measured, levels rose about twofold in response to LPS or to lipid A and remained elevated for as long as 5 min. Lipid A, in the concentration range of 0.1 to 10 micrograms/ml, induced elevated intracellular levels of Ca2+ as quantified by fluorescence with Quin 2 or with Fura 2. When single, adherent Fura 2-loaded macrophages were treated with lipid A, basal levels of calcium rose over 10 sec from approximately 55 nM to almost 600 nM. LPS, paradoxically, did not cause such substantial increases in intracellular calcium (i.e., increases of approximately 26 nM) when judged by Fura 2 fluorescence. LPS treatment led to enhanced phosphorylation of a characteristic set of proteins, similar to those induced by stimulating protein kinase C (PKC) with phorbol myristate acetate as previously reported. The enhanced phosphorylation of pp28, pp33, and pp67 in macrophages was evident by 15 min and optimal by 30 min. Taken together, these observations indicate that LPS and lipid A cause increased breakdown of phosphatidylinositol 4,5-bisphosphate, which led to enhanced intracellular levels of calcium and also to enhanced protein phosphorylation, presumably mediated by PKC. The data thus suggest that one major intracellular signal transduction mechanism, initiated by LPS and lipid A in macrophages, is the rapid breakdown of PIP2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号