首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Müllerian inhibiting substance (MIS), a member of the transforming growth factor-beta superfamily, induces regression of the Müllerian duct in male embryos. In this report, we demonstrate MIS type II receptor expression in normal breast tissue and in human breast cancer cell lines, breast fibroadenoma, and ductal adenocarcinomas. MIS inhibited the growth of both estrogen receptor (ER)-positive T47D and ER-negative MDA-MB-231 breast cancer cell lines, suggesting a broader range of target tissues for MIS action. Inhibition of growth was manifested by an increase in the fraction of cells in the G(1) phase of the cell cycle and induction of apoptosis. Treatment of breast cancer cells with MIS activated the NFkappaB pathway and selectively up-regulated the immediate early gene IEX-1S, which, when overexpressed, inhibited breast cancer cell growth. Dominant negative IkappaBalpha expression ablated both MIS-mediated induction of IEX-1S and inhibition of growth, indicating that activation of the NFkappaB signaling pathway was required for these processes. These results identify the NFkappaB-mediated signaling pathway and a target gene for MIS action and suggest a putative role for the MIS ligand and its downstream interactors in the treatment of ER-positive as well as negative breast cancers.  相似文献   

2.
During embryogenesis normal male phenotypic development requires the action of Müllerian Inhibiting Substance (MIS) which is secreted by Sertoli cells of the fetal testis. As testes differentiate in genetic (XY) males, they produce MIS which causes regression of the Müllerian ducts, the anlagen of the female reproductive tract. Soon thereafter, testicular androgens stimulate the Wolffian ducts. In females, on the other hand, MIS is not produced by grandulosa cells until after birth, before which, estrogens induce Müllerian duct development, while the Wolffian ducts passively atrophy in the absence of androgenic stimulation. High serum MIS levels in males are maintained until puberty, whereupon they fall to baseline levels. In females MIS is undetectable in serum until the peripubertal period when values approach the baseline levels of males. This distinct pattern of sexual and ontogenic expression presupposes and requires tight regulation. MIS may play a role in gonadal function and development. Our laboratory has shown that an important role for ovarian MIS is to inhibit oocyte meiosis, perhaps providing maximal oocyte maturation prior to selection for ovulation and subsequent fertilization. Furthermore, Vigier et al. (Development 100:43-55) have recently obtained evidence that MIS may influence testicular differentiation, coincident with inhibition of aromatase activity. Current structure-function studies demonstrate that MIS, like other growth regulators in its protein family, requires proteolytic cleavage to exhibit full biological activity. MIS can be inhibited by epidermal growth factor. This antagonism, which is common to all MIS functions so far investigated, is associated with inhibition of EGF receptor autophosphorylation. We have provided evidence that bovine MIS can inhibit female reproductive tract tumors arising in adults.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In mammalian development, the signaling pathways that couple extracellular death signals with the apoptotic machinery are still poorly understood. We chose to examine Müllerian duct regression in the developing reproductive tract as a possible model of apoptosis during morphogenesis. The TGFbeta-like hormone, Müllerian inhibiting substance (MIS), initiates regression of the Müllerian duct or female reproductive tract anlagen; this event is essential for proper male sexual differentiation and occurs between embryonic days (E) 14 and 17 in the rat. Here, we show that apoptosis occurs during Müllerian duct regression in male embryos beginning at E15. Female Müllerian ducts exposed to MIS also exhibited prominent apoptosis within 13 h, which was blocked by a caspase inhibitor. In both males and females the MIS type-II receptor is expressed exclusively in the mesenchymal cell layer surrounding the duct, whereas apoptotic cells localize to the epithelium. In addition, tissue recombination experiments provide evidence that MIS does not act directly on the epithelium to induce apoptosis. Based on these data, we suggest that MIS triggers cell death by altering mesenchymal-epithelial interactions.  相似文献   

4.
Müllerian inhibiting substance (MIS) on rat Müllerian duct (Md), and four Müllerian-derived tumor cells: HeLa S-3, RL-95.2, A-431 and NIH:OVCAR-3 are recognized by the poly- and mono-clonal avian-MIS-antibodies (A-MIS-Abs) using avidin-biotin complex (ABC) immunolabeling techniques. Internalization of MIS-ligand complexes was successfully detected in HeLa S-3, OVCAR-3 and RL 95.2 cells. Control groups include: (i) the samples omitted primary antibody treatment, (ii) Wolffian duct by side of Md in the genital ridge, and (iii) another two MIS-negative tumor cell lines of non-Müllerian origin: Chang hepatoma ascites cell and mouse myeloma cell (X63-Ag 8.653). Genital ridges from rat embryos of 14d of gestation were removed under dissection microscope, fixed in 2.5% glutaraldehyde in D-PBS of pH 7.2 for 30 min, and sliced into 0.1-0.2 mm thick pieces. A-431, HeLa S-3 and NIH:OVCAR-3 were maintained in OPTI-MEM culture medium, RL-95.2 was cultured in F12 culture medium. The cells were transferred to 24-well flat bottom culture plates with Thermanox tissue culture coverslips. The immunolabeling of fixed and non-fixed samples were processed within the wells. These studies provide first immunocytochemical evidences for the similarity between A-MIS and M-MIS molecules by polyclonal and monoclonal A-MIS-Ab. It has also proved that the tumor cell lines, which were subjects of MIS inhibition of cell growth, showed MIS binding on cell surfaces.  相似文献   

5.
Examination of Müllerian inhibiting substance (MIS) signaling in the rat in vivo and in vitro revealed novel developmental stage- and tissue-specific events that contributed to a window of MIS responsiveness in Müllerian duct regression. The MIS type II receptor (MISRII)-expressing cells are initially present in the coelomic epithelium of both male and female urogenital ridges, and then migrate into the mesenchyme surrounding the male Müllerian duct under the influence of MIS. Expression of the genes encoding MIS type I receptors, Alk2 and Alk3, is also spatiotemporally controlled; Alk2 expression appears earlier and increases predominantly in the coelomic epithelium, whereas Alk3 expression appears later and is restricted to the mesenchyme, suggesting sequential roles in Müllerian duct regression. MIS induces expression of Alk2, Alk3 and Smad8, but downregulates Smad5 in the urogenital ridge. Alk2-specific small interfering RNA (siRNA) blocks both the transition of MISRII expression from the coelomic epithelium to the mesenchyme and Müllerian duct regression in organ culture. Müllerian duct regression can also be inhibited or accelerated by siRNA targeting Smad8 and Smad5, respectively. Thus, the early action of MIS is to initiate an epithelial-to-mesenchymal transition of MISRII-expressing cells and to specify the components of the receptor/SMAD signaling pathway by differentially regulating their expression.  相似文献   

6.
An immunoblotting method was used to purify a Müllerian-inhibiting substance (MIS)-specific antiserum. The serum was used to quantify the content of MIS in developing chick gonads by competitive enzyme-linked immunosorbent assay. From embryonic stages to the eleventh week after hatching, male chicken testes have a high content of MIS in the following two stages: (1) from the sixth to the eighth day and from the fourteenth to the twentieth day of incubation, and (2) from the second to the eighth week after hatching. The high content of MIS in the early embryonic stage is closely correlated with the natural pattern of Müllerian duct regression observed in the male embryo. From the sixth to the twelfth day of incubation, the female right ovary contains a higher content of MIS than that of the left ovary. Up to the fourteenth day of incubation, the content of MIS in the left ovary reaches maximum levels and then declines. The combination of MIS from right and left ovaries was found to be highest in the ninth to the fourteenth day of incubation, when the regression of the right Müllerian duct reached its highest peak. However, the question of the inability of MIS to cause regression of the female left Müllerian duct and the caudal part of the right duct is raised and discussed. The hypothesis that prenatal estrogenic hormone (diethylstilbestrol) protects the Müllerian duct has been reevaluated. It was found that estrogen does not reduce the MIS content in prenatally treated gonads.  相似文献   

7.
Programmed cell death of the Müllerian duct eliminates the primitive female reproductive tract during normal male sexual differentiation. Müllerian inhibiting substance (MIS or AMH) triggers regression by propagating a BMP-like signaling pathway in the Müllerian mesenchyme that culminates in apoptosis of the Müllerian duct epithelium. Presently, the paracrine signal(s) used in this developmental event are undefined. We have identified a member of the matrix metalloproteinase gene family, Mmp2, as one of the first candidate target genes downstream of the MIS cascade to function as a paracrine death factor in Müllerian duct regression. Consistent with a role in regression, Mmp2 expression was significantly elevated in male but not female Müllerian duct mesenchyme. Furthermore, this sexually dimorphic expression of Mmp2 was extinguished in mice lacking the MIS ligand, suggesting strongly that Mmp2 expression is regulated by MIS signaling. Using rat organ genital ridge organ cultures, we found that inhibition of MMP2 activity prevented MIS-induced regression, whereas activation of MMP2 promoted ligand-independent Müllerian duct regression. Finally, MMP2 antisense experiments resulted in partial blockage of Müllerian duct regression. Based on our findings, we propose that similar to other developmental programs where selective elimination or remodeling of tissues occurs, localized induction of extracellular proteinases is critical for normal male urogenital development.  相似文献   

8.
Women exposed to diethylstilbestrol (DES) in utero develop abnormalities, including cervicovaginal adenosis that can lead to cancer. We report that transient disruption of developmental signals by DES permanently changes expression of p63, thereby altering the developmental fate of Müllerian duct epithelium. The cell fate of Müllerian epithelium to be columnar (uterine) or squamous (cervicovaginal) is determined by mesenchymal induction during the perinatal period. Cervicovaginal mesenchyme induced p63 in Müllerian duct epithelium and subsequent squamous differentiation. In p63(-/-) mice, cervicovaginal epithelium differentiated into uterine epithelium. Thus, p63 is an identity switch for Müllerian duct epithelium to be cervicovaginal versus uterine. P63 was also essential for uterine squamous metaplasia induced by DES-exposure. DES-exposure from postnatal day 1 to 5 inhibited induction of p63 in cervicovaginal epithelium via epithelial ERalpha. The inhibitory effect of DES was transient, and most cervicovaginal epithelial cells recovered expression of p63 by 2 days after discontinuation of DES-treatment. However, some cervicovaginal epithelial cells failed to express p63, remained columnar and persisted into adulthood as adenosis.  相似文献   

9.
Müllerian inhibiting substance (MIS), also known as anti-Müllerian hormone, is a glycoprotein belonging to transforming growth factor beta superfamily. In mammals, MIS is responsible for regression of Müllerian ducts, anlagen of the female reproductive ducts, in the male fetus. However, the role of MIS in gonadal sex differentiation of teleost fishes, which do not have the Müllerian ducts, has yet to be clarified. To address the role of MIS on gonadal sex differentiation in fishes, we isolated a MIS cDNA from the Japanese flounder testis and examined the expression pattern of MIS mRNA in gonads of both sexes during sex differentiation period. In this study, we present the first demonstration of sexually dimorphic expression of MIS mRNA during sex differentiation in teleost fishes, similarly to amniote vertebrates which possess the Müllerian ducts.  相似文献   

10.
We have isolated the bovine and human genes for Müllerian inhibiting substance (MIS), a testicular glycoprotein that causes regression of the Müllerian duct during development of the male embryo. The mRNA sequence of bovine MIS, determined from an analysis of cDNA and genomic clones, codes for a protein of 575 amino acids containing a 24 amino acid leader peptide. The human gene has five exons that code for a protein of 560 amino acids. A comparison of the bovine and human MIS proteins reveals a highly conserved C-terminal domain that shows marked homology with human transforming growth factor-beta and the beta chain of porcine inhibin. Animal cells transfected with the human gene secrete biologically active MIS, which causes regression of the rat Müllerian duct in vitro.  相似文献   

11.
A study was undertaken to determine (1) the effects of endogenous Müllerian inhibiting substance (MIS) on the developing human fetal genital tract; (2) the time in fetal life when MIS is first capable of inhibiting the growth of the embryonic Müllerian ducts; and (3) the reversibility of the effects of MIS on the developing male Müllerian ducts. Human fetal reproductive tracts were transplanted and grown for sustained periods in vivo in athymic nude mice. The genital tracts from 12 male human fetuses, ages 51 to 68 days postovulation, were grafted without their associated gonads into castrated murine hosts and grown for 30 to 70 days. Controls consisted of genital tracts from 8 female human fetuses, ages day 53 to 70 that were grown under identical conditions. Male specimens grew to approximately one-half the size of female specimens and disclosed varying degrees of inhibition of the Müllerian duct system from absence of the Müllerian ducts in older specimens (after Day 63) to poorly segregated segments of stroma as the mildest defect (less than Day 61). It is concluded that (1) MIS secretion by the embryonic testes probably begins before Day 51 of gestation; (2) the effects of MIS are progressive during the so-called critical window; (3) the effects of MIS are permanent; and (4) the mesenchyme is an important target of MIS.  相似文献   

12.
Müllerian inhibiting substance (MIS or anti-Müllerian hormone) is a member of the transforming growth factor-beta family and plays a pivotal role in proper male sexual differentiation. Members of this family signal by the assembly of two related serine/threonine kinase receptors, referred to as type I or type II receptors, and downstream cytoplasmic Smad effector proteins. Although the MIS type II receptor (MISRII) has been identified, the identity of the type I receptor is unclear. Here we report that MIS activates a bone morphogenetic protein-like signaling pathway, which is solely dependent on the presence of the MISRII and bioactive MIS ligand. Among the multiple type I candidates tested, only ALK2 resulted in significant enhancement of the MIS signaling response. Furthermore, dominant-negative and antisense strategies showed that ALK2 is essential for MIS-induced signaling in two independent assays, the cellular Tlx-2 reporter gene assay and the Müllerian duct regression organ culture assay. In contrast, ALK6, the other candidate MIS type I receptor, was not required. Expression analyses revealed that ALK2 is present in all MIS target tissues including the mesenchyme surrounding the epithelial Müllerian duct. Collectively, we conclude that MIS employs a bone morphogenetic protein-like signaling pathway and uses ALK2 as its type I receptor. The use of this ubiquitously expressed type I receptor underscores the role of the MIS ligand and the MIS type II receptor in establishing the specificity of the MIS signaling cascade.  相似文献   

13.
Breeding studies in a strain of miniature schnauzer dogs with Persistent Müllerian Duct Syndrome (PMDS) indicate this syndrome is inherited as an autosomal recessive trait, as it is in man. Testes of neonatal dogs affected with PMDS and normal male littermates were examined for Müllerian Inhibiting Substance (MIS) production by immunohistochemistry and bioassay. MIS immunoactivity was detected in Sertoli cells of normal and affected pups using an avidin-biotin complex-enhanced method. Rat embryonic Müllerian ducts regressed when cocultured with testis fragments of both normal and affected pups in a graded organ culture bioassay, demonstrating that the MIS produced was bioactive. These findings indicate that Müllerian duct persistence in affected dogs is not due to a mutation in the structural gene for MIS, but rather, by inference, to a failure of response to MIS at the receptor level.  相似文献   

14.
We have established a new method to purify Müllerian inhibiting substance (MIS) with higher purity and recovery over existing procedures. Recombinant human MIS was expressed in Chinese hamster ovary cells and secreted into chemically defined serum-free media. The secreted products were concentrated by either precipitation with ammonium sulfate or lectin-affinity chromatography, each of which was followed by anion-exchange chromatography. Further separation of the active carboxy-terminal domain of MIS was achieved after cleavage by plasmin followed by lectin-affinity chromatography. This method may be applicable to other members of the transforming growth factor beta family with which MIS shares sequence homology.  相似文献   

15.
I report on the synthesis of fibronectin in the developing chick Müllerian duct mesenchymal cells. Before the differentiation of female chick Müllerian duct, the amount of fibronectin in the cells of the right duct is 44% lower than in the left duct. While after differentiation, the amount of fibronectin in the right duct is 29% lower, as compared to the left duct. Estrogenic hormone diethylstilbestrol (DES) treatment was carried out at the 5th day of incubation when both female Müllerian ducts were undifferentiated. Three days after DES treatment, the regression of the right duct was prevented, and the amount of fibronectin was induced by 89%, while induction in the left duct was 11%. Eight days after DES administration, the amount of fibronectin in the right and left Müllerian duct was induced by 150 and 76%, respectively. After DES treatment in the male embryo, both Müllerian ducts were retained, and the capacity for fibronectin synthesis was preserved. Application of the indirect immunocytochemical labeling technique revealed Müllerian-inhibiting substance (MIS) binding sites on the membrane of the Müllerian mesenchymal cells. The addition of chick MIS in the culture medium reduced the amount of detectable fibronectin in the cultured mesenchymal cells. The synthesis of fibronectin in intestinal mesenchymal cells was not affected by DES or MIS.  相似文献   

16.
We have investigated the effects of androgen or oestrogen treatment of female or male tammar wallabies from the day of birth, when the gonads are histologically undifferentiated, to day 25 of pouch life, when the gonads and the Wolffian and Müllerian ducts have differentiated and the testes have migrated through the inguinal canal. Female tammars treated with testosterone propionate (24-50 mg kg-1 day-1) orally for 25 days had enlarged Wolffian and Müllerian ducts. Mammary and pouch development, however, was indistinguishable from that of control females. The treatment had no apparent effect on ovarian development, or on ovarian position in the abdomen. The phallus of males and females was similar in size, and neither experimental treatment had a significant effect on its size at day 25. Male tammars treated with oestradiol benzoate (1.2-2.5 mg kg-1 day-1) orally for 25 days had gross hypertrophy of the urogenital sinus. Testicular morphology was abnormal; many of the germ cells appeared necrotic, the seminiferous tubules were of reduced diameter, and there were few Leydig cells and increased amounts of fibrous tissue between the tubules. The cortex of these gonads contained some areas which had an ovarian appearance, lacking tubules and containing numerous germ cells. The Müllerian ducts of control males had regressed, but this was prevented by oestrogen treatment, suggesting an inhibition of either Müllerian Inhibiting Substance (MIS) production or its action. Normal testicular migration was inhibited in treated males; the testes remained high in the abdomen, similar in position to the ovaries of control females, whilst control males all had testes in the inguinal region. The gubernaculum and processus vaginalis of control males extended into the scrotum, but in treated males they terminated outside it. Oestrogen treatment had no effect on the size of the scrotum and did not induce mammary or pouch development. These experiments show that marsupials, like eutherians, have a dual hormonal control of Wolffian and Müllerian development. By contrast, the initial development of the mammary glands, pouch, gubernaculum and scrotum does not appear to be under hormonal control and is therefore likely to be autonomous and dependent on genotype.  相似文献   

17.
Signal reception of Müllerian inhibiting substance (MIS) in the mesenchyme around the embryonic Müllerian duct in the male is essential for regression of the duct. Deficiency of MIS or of the MIS type II receptor, MISRII, results in abnormal reproductive development in the male due to the maintenance of the duct. MIS is a member of the transforming growth factor-beta (TGFbeta) superfamily of secreted protein hormones that signal through receptor complexes of type I and type II serine/threonine kinase receptors. To investigate candidate MIS type I receptors, we examined reporter construct activation by MIS. The bone morphogenetic protein (BMP)-responsive Tlx2 and Xvent2 promoter-driven reporter constructs were stimulated by MIS but the TGFbeta/activin-induced p3TP-lux or CAGA-luc reporter constructs were not. The induction of Tlx2-luc was dependent upon the kinase activity of MISRII and was blocked by a dominant negative truncated ALK2 (tALK2) receptor but not by truncated forms of the other BMP type I receptors ALK1, ALK3, or ALK6. MIS induced activation of a Gal4DBD-Smad1 but not a Gal4DBD-Smad2 fusion protein. This activation could also be blocked by tALK2. The BMP-induced inhibitory Smad, Smad6, was up-regulated by MIS endogenously in Leydig cell-derived lines and is expressed in male but not female Müllerian duct mesenchyme. ALK6 has been shown to function as an MIS type I receptor. Investigation of the pattern of ALK2, MISRII, and ALK6 in the developing urogenital system demonstrated overlapping expression of ALK2 and MISRII in the mesenchyme surrounding the duct while ALK6 was observed only in the epithelium. Examination of ALK6 -/- male animals revealed no defect in duct regression. The reporter construct analysis, pattern of expression of the receptors, and analysis of ALK6-deficient animals suggest that ALK2 is the MIS type I receptor involved in Müllerian duct regression.  相似文献   

18.
The effects of diethylstilboestrol on morphogenesis and cyto-differentiation of the chick-embryo left Müllerian duct were examined. Embryos were treated at different stages of development with maximal-responsive doses of diethylstilboestrol over a 5-day interval. The shell gland and magnum regions of the Müllerian duct were then assayed for growth and histological morphogenesis. The results were correlated with diethylstilboestrol-induced ovalbumin-gene expression as measured by ovalbumin-mRNA (mRNAov) accumulation and the relative rate of ovalbumin synthesis. Treatment of the embryo from day 10 to day 15 of incubation induces morphogenesis of tubular-gland cells in the Müllerian-duct magnum. Although these cells constitute 10% of the total cell population and contain an average of 8000 molecules of mRNAov per cell, ovalbumin synthesis is only 0.85% of total magnum protein synthesis. The Müllerian-duct magnum of embryos treated from day 13 to day 18 of incubation contains about 30% tubular-gland cells, which have accumulated an average of 7000 molecules of mRNAov per cell, but ovalbumin synthesis is only 3.25% of total magnum protein synthesis. The Müllerian-duct magnum of embryos treated from day 16 to day 21 of incubation contains about 50% tubular-gland cells, which have accumulated an average of 6500 mRNAov molecules per cell, and ovalbumin synthesis is 10% of total magnum protein synthesis. Oestrogen responsiveness develops simultaneously in the Müllerian-duct magnum and shell-gland regions. Compared with the rate of diethylstilboestrol-induced oviduct growth, the relative rate of diethylstilboestrol-induced Müllerian-duct growth increases with embryonic age, from 20-fold lower in the 10-day embryo to only 3-fold lower in the 16-day embryo. All results are discussed in comparison with the responses to oestrogen of the immature chick oviduct, and in terms of the ontogeny of hormone-competent epithelial and stromal components of the Müllerian duct. It is concluded that the development of oestrogenic competence in the embryonic Müllerian duct is a multiphasic phenomenon. A dramatic increase in hormone responsiveness in the Müllerian duct occurs between days 10 and 16 of development, and a less dramatic final maturation of oestrogen responsiveness occurs between day 16 of development and 1 week after hatching.  相似文献   

19.
Fetal testes explanted at 16.5 days and cultured with female genital tracts from 13.5-day-old rat fetuses strongly inhibited the Müllerian ducts and reduced the number of ovarian germ cells. Such a reduction was not obtained during cultures with testes from 13.5 days, even though they clearly inhibited Müllerian ducts. When testes from 16.5 days were cultured at distance from the female tracts only the loss of germ cells was observed. These results suggest that testes from 16.5 days produce a diffusible factor distinct from AMH and which reduces the number of germ cells in cultured ovaries.  相似文献   

20.
Anti-Müllerian hormone (AMH) is a dimeric glycoprotein member of the TGF-β family. It is synthesized by immature Sertoli cells, and, to a lesser degree, by adult Sertoli and granulosa cells. AMH is responsible for the regression of Müllerian ducts in the male fetus; it also has deleterious effects on the female fetal reproductive tract, destroying Müllerian primordia and germ cells, and masculinizing the fetal ovary on the rare occasions female fetuses become exposed to its effects. All other suggested actions for AMH—retardation of oocyte meiosis, inhibition of EGF receptor autophosphorylation, anti-cancer activity—have been reported with crude hormone preparations, and have not been confirmed using pure AMH. Its relatively limited sphere of action—the fetal genital tract—and the fact that it is secreted into the general circulation and can act at long range, imply that AMH is more like a hormone than a growth factor, but the complex interaction between hormones and growth factors make a formal distinction impossible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号