首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inorganic pyrophosphate (PPi) in the intracellular concentration range causes rapid efflux of Ca2+ from rat heart mitochondria oxidizing pyruvate + malate in a low Na+ medium. Half-maximal rates of Ca2+ efflux were given by 20 microM PPi. During and after PPi-stimulated Ca2+ efflux the mitochondria retain their structural integrity and complete respiratory control. Carboxyatractyloside inhibits PPi-stimulated Ca2+ efflux, indicating PPi must enter the matrix in order to promote Ca2+ efflux. Heart mitochondria have a much higher affinity for PPi uptake and PPi-induced Ca2+ efflux than liver mitochondria.  相似文献   

2.
Ca2+-release pathways from Ca2+-preloaded mitochondria of the yeast Endomyces magnusii were studied. In the presence of phosphate as a permeant anion, Ca2+ was released from respiring mitochondria only after massive cation loading at the onset of anaerobiosis. Intensive aeration of the mitochondrial suspension rapidly inhibited the efflux of Ca2+ and induced its reuptake. The Ca2+ release was not affected by cyclosporin A, an inhibitor of the nonselective permeability transition of mammalian mitochondria. With acetate as the permeant anion, a spontaneous net Ca2+ efflux began after uptake of about 75% of the added cation. The rate of this efflux was insensitive to cyclosporin A, aeration, and Na+ and was proportional to the Ca2+ load. The Ca2+ release was inhibited by La3+, Mn2+, Mg2+, TPP+, and nigericin (in the presence of KCl) and activated by spermine and hypotonicity. We conclude that Ca2+ efflux from preloaded E. magnusii mitochondria is very similar to the Na+-independent specific pathway for Ca2+ release operative in mitochondria from nonexcitable mammalian tissues.  相似文献   

3.
The Ruthenium Red-insensitive efflux of Ca2+ from previously loaded rat liver mitochondria was studied as a function of the added Na+ concentration and ADP present. Stimulation of Ca2+ efflux is sigmoidally dependent on the Na+ concentration; maximal stimulation of efflux was observed with 12--15 mM-NaCl. Na+-stimulated Ca2+ efflux from liver mitochondria is about one-tenth that from cardiac mitochondria. No synergistic effect of K+ on the Na+-stimulated efflux was found. The alkali-metal cations other than Na+ did not stimulate efflux and did not prevent stimulation by Na+. In the absence of Na+, Ca2+ efflux was diminished by added ADP, but the Na+-stimulated efflux was made correspondingly greater as ADP concentration was increased to 16 microM. The Na+-stimulated Ca2+ efflux was inhibited by 70% by oligomycin and was not observed in the presence of antimycin. It is suggested that failure to observe Na+-stimulation of Ca2+ efflux from liver mitochondria by some investigators is attributable to a high basal efflux existing before addition of the Na+ salt.  相似文献   

4.
Addition of ruthenium red to mitochondria isolated from brain, adrenal cortex, parotid gland and skeletal muscle inhibits further uptake of Ca2+ by these mitochondria but induces little or no net Ca2+ efflux; the further addition of Na+, however, induces rapid efflux of Ca2+. The velocity of the Na+-induced efflux of Ca2+ from these mitochondria exhibits a sigmoidal dependence on the [Na+]. Addition of Na+ to mitochondria exhibiting the most active Na+-dependent efflux of Ca2+ (brain and adrenal cortex) also releases Ca2+ in the absence of ruthenium red and, under these conditions, the mitochondria become uncoupled. It is concluded that the efflux of Ca2+ from these mitochondria occurs via a Na+-dependent pathway, possibly a Na+-Ca2+ antiporter, that is distinct from the ruthenium-red-sensitive carrier that catalyses energy-linked Ca2+-influx. The possible role of the Na+-dependent efflux process in the distribution of Ca2+ between the mitochondria and the cytosol is discussed. In contrast, mitochondria from liver, kidney, lung, uterus muscle and ileum muscle exhibit no Na+-dependent efflux of Ca2+.  相似文献   

5.
Mechanism of sodium independent calcium efflux from rat liver mitochondria   总被引:1,自引:0,他引:1  
On the basis of primarily two types of observations, it has been suggested that the Na+-independent Ca2+ efflux mechanism of rat liver mitochondria is a passive Ca2+-2H+ exchanger. First, when a pulse of acid is added to a suspension of mitochondria loaded with Ca2+, a pulse of intramitochondrial Ca2+ is often released, even in the presence of the inhibitor of mitochondrial Ca2+ influx, ruthenium red. Second, at a pH near 7, the stoichiometry of Ca2+ released to H+ taken up by Ca2+-loaded mitochondria, following treatment with ruthenium red, has been observed to be 1:2. This evidence for a Ca2+-2H+ exchanger is reexamined here by studying the release of Ca2+ upon acidification of the medium by addition of buffer, the dependence of liver mitochondrial Ca2+ efflux on external medium pH and intramitochondrial pH, and the Ca2+-Ca2+ exchange properties of the Ca2+ efflux mechanism. These studies show no pulse of mitochondrial Ca2+ efflux when pH is abruptly lowered by addition of buffer. The stoichiometry between Ca2+ and H+ fluxes is found to be highly pH dependent. The reported 1:2 stoichiometry between Ca2+ efflux and H+ influx is only observed at one pH. Furthermore, the rate of Ca2+ efflux from mitochondria is found to increase only very slightly at most as suspension pH is decreased. The rate of Ca2+ efflux is not found to increase with increasing intramitochondrial pH. Finally, no Ca2+-Ca2+ isotope exchange can be demonstrated over the Na+-independent efflux mechanism (i.e., in the presence of ruthenium red). It is concluded that these data do not support the hypothesis that the Na+-independent Ca2+ efflux mechanism is a passive Ca2+-2H+ exchanger.  相似文献   

6.
Ruthenium red-insensitive, uncoupler-stimulated release of Ca2+ from Ehrlich ascites tumor cell mitochondria is much slower than from rat liver mitochondria under comparable conditions. In the presence of Pi and at moderate or high Ca2+ loads, ruthenium red-insensitive Ca2+ efflux elicited with uncoupler is approximately 20 times more rapid for rat liver than Ehrlich cell mitochondria. This is attributed to resistance of tumor mitochondria to damage by Ca2+ due to a high level of endogenous Mg2+ that also attenuates Ca2+ efflux. Calcium release from rat liver and tumor mitochondria is inhibited by exogenous Mg2+. This applies to ruthenium red-insensitive spontaneous Ca2+ efflux associated with Ca2+ uptake and uncoupling, and (b) ruthenium red-insensitive Ca2+ release stimulated by uncoupling agent. The endogenous Mg2+ level of Ehrlich tumor mitochondria is approximately three times that of rat liver mitochondria. Endogenous Ca2+ is also much greater (six fold) in Ehrlich tumor mitochondria compared to rat liver. Despite the quantitative difference in endogenous Mg2+, the properties of internal Mg2+ are much the same for rat liver and Ehrlich cell mitochondria. Ehrlich ascites tumor mitochondria exhibit slow, metabolically dependent Mg2+ release and rapid limited release of Mg2+ during Ca2+ uptake. Both have been observed with rat liver and other types of mitochondria. The proportions of apparently "bound" and "free" Mg2+ (inferred from release by the ionophore, A23187) do not differ significantly between tumor and liver mitochondria. Thus, the endogenous Mg2+ of tumor mitochondria has no unusual features but is simply elevated substantially. Ruthenium red-insensitive Ca2+ efflux, when expressed as a function of the intramitochondrial Ca2+/Mg2+ ratio, is quite similar for tumor and rat liver. It is proposed, therefore, that endogenous Mg2+ is a major regulatory factor responsible for differences in the sensitivity to damage by Ca2+ and Ca2+ release by Ehrlich ascites tumor mitochondria compared to mitochondria from normal tissues.  相似文献   

7.
Bongkrekic acid and atractyloside, inhibitors of adenine nucleotide translocase, do not inhibit Ca2+ uptake and H+ production by pig heart mitochondria. However, bongkrekic acid, but not atractyloside, inhibits dinitrophenol-induced Ca2+ efflux and H+ uptake. Conversely, ruthenium red blocks Ca2+ uptake and H+ production but does not prevent dinitrophenol-induced Ca2+ efflux and H+ uptake by mitochondria. These results suggest that mitochondrial Ca2+ uptake and release exist as two independent pathways. The efflux of Ca2+ from mitochondria is mediated by a bongkrekic acid sensitive component which is apparently not identical to the ruthenium red sensitive Ca2+ uptake carrier.  相似文献   

8.
The effect of inorganic phosphate on Ca2+ retention has been investigated using phosphate-depleted liver mitchondria. Phosphate induces the release of Ca2+ through an efflux route insensitive to ruthenium red. This effect is not due to functional or structural damage, since mitochondria maintain their membrane potential during phosphate-induced Ca2+ efflux. Direct enzymatic measurement of mitochondria pyridine nucleotides has established that changes in their redox state (i.e. increased oxidation) do not play a role in the phosphate-effect. The phosphate-induced Ca2+ efflux requires transport of phosphate out of mitochondria. However, the fluxes of Ca2+ and phosphate do not coincide: the release of phosphate preceeds that of Ca2+.  相似文献   

9.
The effects of fatty acids and monovalent cations on the Ca2+ efflux from isolated liver and kidney mitochondria were investigated by means of electrode techniques. It was shown that unsaturated fatty acids and saturated fatty acids of medium chain length (C12 and C14) induced a Ca2+ efflux from mitochondria which was not inhibited by ruthenium red, but was specifically inhibited by Na+ and Li+. The Ca2+-releasing activity of unsaturated fatty acids did not correlate with their uncoupling activity. In kidney mitochondria a spontaneous, temperature-dependent Ca2+ efflux was observed which was inhibited either by albumin or by Na+. It is suggested that the net Ca2+ accumulation by mitochondria depends on the operation of independent pump and leak pathways. The pump is driven by the membrane potential and can be inhibited by ruthenium red, the leak depends on the presence of unsaturated fatty acids and is inhibited by Na+ and Li+. It is suggested that the unsaturated fatty acids produced by mitochondrial phospholipase A2 can be essential in the regulation of the Ca2+ retention in and the Ca2+ release from the mitochondria.  相似文献   

10.
Manganese shares the uniport mechanism of mitochondrial calcium influx, accumulates in mitochondria and is cleared only very slowly from brain. Using dual-label isotope techniques, we have investigated both Mn2+ and Ca2+ mitochondrial efflux kinetics. We report that (1) there is no significant Na(+)-dependent Mn2+ efflux from brain mitochondria; (2) Mn2+ inhibits both Na(+)-dependent and Na(+)-independent Ca2+ efflux in brain, in a mode that appears to be primarily competitive and with apparent Ki values of 5.1 and 7.9 nmol/mg respectively; and (3) Ca2+ does not appear to inhibit Mn2+ efflux from brain mitochondria. Findings (1) and (2) suggest the possibility of mitochondrial accumulation of both Mn2+ and Ca2+ in Mn2(+)-intoxicated brain.  相似文献   

11.
Simultaneous measurements of oxygen consumption and transmembrane transport of Ca2+, H+, and phosphate show that the efflux of Ca2+ from respiring tightly coupled rat liver mitochondria takes place by an electroneutral Ca2+/2H+ antiport process that is ruthenium red-insensitive and that is regulated by the oxidation-reduction state of the mitochondrial pyridine nucleotides. When mitochondrial pyridine nucleotides are kept in a reduced steady state, the efflux of Ca2+ is inhibited; when they are in an oxidized state, Ca2+ efflux is activated. These processes were demonstrated by allowing phosphate-depleted mitochondria respiring on succinate in the presence of rotenone to take up Ca2+ from the medium. Upon subsequent addition of ruthenium red to block Ca2+ transport via the electrophoretic influx pathway, and acetoacetate, to bring mitochondrial pyridine nucleotides into the oxidized state, Ca2+ efflux and H+ influx ensued. The observed H+ influx/Ca2+ efflux ratio was close to the value 2.0 predicted for the operation of an electrically neutral Ca2+/2H+ antiport process.  相似文献   

12.
Gliotoxin (GT) is a hydrophobic fungal metabolite of the epipolythiodioxopiperazine group which reacts with membrane thiols. When added to a suspension of energized brain mitochondria, it induces matrix swelling of low amplitude, collapse of membrane potential (DeltaPsi), and efflux of endogenous cations such as Ca2+ and Mg2+, typical events of mitochondrial permeability transition (MPT) induction. These effects are due to opening of the membrane transition pore. The addition of cyclosporin A (CsA) or ADP slightly reduces membrane potential collapse, matrix swelling and Ca2+ efflux; Mg2+ efflux is not affected at all. The presence of exogenous Mg2+ or spermine completely preserve mitochondria against DeltaPsi collapse, matrix swelling and Ca2+ release. Instead, Mg2+ efflux is only slightly affected by spermine. Our results demonstrate that, besides inducing MPT, gliotoxin activates a specific Mg2+ efflux system from brain mitochondria.  相似文献   

13.
The uncoupler-induced release of accumulated Ca2+ from heart mitochondria can be separated into two components, one sensitive and one insensitive to ruthenium red. In mitochondria maintaining reduced NAD(P)H pools and adequate levels of endogenous adenine nucleotides, the release of Ca2+ following addition of an uncoupler is virtually all inhibited by ruthenium red and can be presumed to occur via reversal of the Ca2+ uniporter. When ruthenium red is added to block efflux via this pathway, high rates of Ca2+ efflux can still be induced by an uncoupler, provided either NADH is oxidized or mitochondrial adenine nucleotide pools are depleted by prior treatment. This ruthenium red-insensitive Ca2+-efflux pathway is dependent on the level of Ca2+ accumulated and is accompanied by swelling of the mitochondria and loss of endogenous Mg2+. Loss of Ca2+ by this relatively nonspecific pathway is strongly inhibited by Sr2+ and by nupercaine, as well as by oligomycin and exogenous adenine nucleotides. The loss of Ca2+ from uncoupled heart mitochondria occurs via a combination of these two mechanisms except under conditions chosen specifically to limit efflux to one or the other pathway.  相似文献   

14.
The efflux of Ca2+ from rat heart mitochondria has been examined by using Ruthenium Red to inhibit active uptake after predetermined loadings with Ca2+. The efflux is proportional to the internal Ca2+ load; it is increased by Na+ applied when the mitochondria are respiring and this effect is inhibited by oligomycin. The efflux of Ca2+ is diminished by ATP and by ADP, with the latter the more effective. Both active uptake and efflux of Ca2+ are slowed by bongkrekic acid; this action has a time lag. The lower efflux found with the nucleotides and with bongkrekic acid seems to correspond to the more condensed state seen in the electron microscope when these agents are applied [Stoner & Sirak (1973) J. Cell Biol. 56, 51-64, 65-73]. The results are discussed in relation to the less-permeable state being contingent upon nucleotide binding to the membrane.  相似文献   

15.
The effect of Sr2+ on the set point for external Ca2+ was studied in rat heart and liver mitochondria with the aid of a Ca2+-sensitive electrode. In respiring mitochondria the set point is determined by the rates of Ca2+ influx on the Ca2+ uniporter and efflux by various mechanisms. We studied the Ca2+-Na+ exchange pathway in heart mitochondria and the delta psi-modulated efflux pathway in liver mitochondria. Prior accumulation of Sr2+ was found to shift the set points towards lower external Ca2+ both in heart mitochondria under conditions of Ca2+-Na+ exchange and in liver mitochondria under conditions that should promote opening of the delta psi-modulated pathway. The effect on the set point was found to be due to inhibition of Ca2+ efflux by Sr2+ taken up by the mitochondria, while Sr2+ efflux was too slow to be measurable.  相似文献   

16.
Spermine enhances electrogenic Ca2+ uptake and inhibits Na(+)-independent Ca2+ efflux in rat brain mitochondria. As a result, Ca2+ retention by brain mitochondria increases greatly and the external free Ca2+ level at steady-state can be lowered to physiologically relevant concentrations. The stimulation of Ca2+ uptake by spermine is more pronounced at low concentrations of Ca2+, effectively lowering the apparent Km for Ca2+ uptake from 3 microM to 1.5 microM. However, the apparent Vmax is also increased. At low Ca2+ concentrations, Ca2+ uptake is diffusion-limited. Spermine strongly inhibits Ca2+ binding to anionic phospholipids and it is suggested that this increases the rate of surface diffusion which reduces the apparent Km for uptake. The same effect could inhibit the Na(+)-independent efflux if the rate of efflux is limited by Ca2+ dissociation from the efflux carrier. In brain mitochondria (but not in liver) the spermine effect depends on the presence of ADP. In a medium that contains physiological concentrations of Pi, Mg+, K+, ADP and spermine, brain mitochondria sequester Ca2+ down to 0.1 microM and below, depending on the matrix Ca2+ load. Moreover, brain mitochondria under the same conditions buffer the external medium at 0.4 microM, a concentration at which the set point becomes independent of the matrix Ca2+ content. Thus, mitochondria appear to be capable of modulating calcium oscillations in brain cells.  相似文献   

17.
1. Nupercaine inhibits the Ca2+ efflux from rat liver mitochondria observed in the presence of Ruthenium Red, 50% inhibition being obtained at 80 microM-Nupercaine. 2. Neither the Ruthenium Red-stimulated efflux nor its inhibition by Nupercaine can be directly attributed to effects on mitochondrial stability. 3. Nupercaine perturbs the steady-state external Ca2+ concentration in the absence of Ruthenium Red to an extent that is explicable in terms of the inhibition of Ca2+ efflux. 4. Various factors that are likely to be involved in determining steady-state extra-mitochondrial Ca2+ concentrations are discussed.  相似文献   

18.
Ca2+ efflux from rat liver mitochondria can occur when endogenous nicotinamide nucleotides are oxidized. It is suggested that nicotinamide nucleotide induced by acetoacetate sensitizes the mitochondria to damaage resulting from the accumulation of Ca2+ in the presence of Pi. Thus, acetoacetate-induced Ca2+ efflux is associated with a loss of respiratory control. Both the effluxes induced by acetoacetate and by high Ca2+ accumulation are prevented by ATP plus oligomycin, although these agents do not prevent the endoagenous nicotinamide nucleotides from becoming oxidized on addition of acetoacetate. Acetoacetate addition only results in Ca2+ release if the Ca2+ and Pi concentration are above a critical value. The acetoacetate-induced Ca2+ effflux is exactly paralled by the virtually complete collapse of the membrane potential. The presence of acetoacetate decreases the concentration of total Ca2+ necessary to induced mitochondrial damage by about 130 nmol of Ca2+/mg of protein. It is concluded that acetoacetate-induced efflux occurs by reversal of the Ca2+ uniporter after the collapse of the membrane potential.  相似文献   

19.
The mechanism by which metalloporphyrins synthesized within the mitochondria escape to the incubation medium was studied in isolated rat liver mitochondria. In a low-ionic-strength sucrose medium, the efflux of metalloporphyrins is markedly decreased when K+ (greater than 10 mM) is added. The effect of K+ is not dependent on the energy state of the mitochondria and it can in part be abolished by adding globin, but not albumin. K+ also decreases the uptake of porphyrins by the mitochondria and thereby the rate of synthesis of metalloporphyrins. Qualitatively similar results are found with Na+, Li+, Mg2+ and Ca2+. Quantitatively, however, the efficiency of cations to inhibit the release of metalloporphyrins decreases in the order: Mg2+ greater than Ca2+ greater than K+ greater than Li+ greater than Na+. Co-protoporhyrin behaves essentially as Co-deuteroporphyrin. The results provide further evidence that the efflux of metalloporphyrins from the mitochondria depends on haem-binding ligands of the suspending medium and also on the ionic strength of the incubation medium.  相似文献   

20.
Functionally intact mitochondria, substantially free of contamination, were isolated from rabbit gastrocnemius muscle after protease digestion and their Ca2+-handling properties examined. When judged by their capacity to retain large Ca2+ loads and the magnitude of basal and Na+-stimulated Ca2+ effluxes, the most suitable isolation method was digestion of finely minced muscle in buffered isoosmotic KCl with low levels (0.4 mg/g) of trypsin or the bacterial protease nagarse, followed by differential centrifugation. Polytron disruption of skeletal muscle in both sucrose- and KCl-based media released mitochondria deficient in cytochrome c. Use of the divalent ion chelator EDTA rather than EGTA in the isolation medium sharply reduced Ca2+-dependent respiratory control and tolerance of the mitochondria to Ca2+ loads, probably by removing Mg2+ essential to membrane integrity. ADP-dependent respiratory control was not altered in mitochondria prepared in an EDTA-containing isolation medium. Purification of mitochondria on a Percoll density gradient did not improve their Ca2+-handling ability despite removal of minor contaminants. Mitochondria prepared by the protease method could accumulate micromole loads of Ca2+/mg while maintaining a low basal Ca2+ efflux. Addition of BSA to the assay medium slightly improved Ca2+ retention but was not essential either during isolation or assay. Ca2+-dependent state 3 respiration was maximal at pH 6.5-7.0 while respiratory control and Ca2+/O were optimal at pH 7.0-7.5. Neither Pi nor oxaloacetate induced Ca2+ release from loaded mitochondria when monitored for 30 min after ruthenium red addition. Na+-stimulated Ca2+ efflux had sigmoidal kinetics with a Hill coefficient of 3. Since skeletal muscle mitochondria can be isolated and assayed in simple media, functional deficiencies of mitochondria from diseased muscle are unlikely to be masked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号