首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding how codons became associated with their specific amino acids is fundamental to deriving a theory for the origin of the genetic code. Carl Woese and coworkers designed a series of experiments to test associations between amino acids and nucleobases that may have played a role in establishing the genetic code. Through these experiments it was found that a property of amino acids called the polar requirement (PR) is correlated with the organization of the codon table. No other property of amino acids has been found that correlates with the codon table as well as PR, indicating that PR is uniquely related to the modern genetic code. Using molecular dynamics simulations of amino acids in solutions of water and dimethylpyridine used to experimentally measure PR, we show that variations in the partitioning between the two phases as described by radial distribution functions correlate well with the measured PRs. Partition coefficients based on probability densities of the amino acids in each phase have the linear behavior with base concentration as suggested by PR experiments.  相似文献   

2.
析遗传密码子多态性之谜   总被引:4,自引:1,他引:3  
建立了1个由16个“3读2”原始密码子组成的系统。它们分为“语义确切”的,和“双义的”,两大类。后者,通过不同的分化方式,进一步分化为语义确切的“3读3”现代密码子;前者则无需再分化,仍保留着“3读2”原始形态,成为孑遗密码子。首次解释了氨基酸具有不同数目密码子,以及线粒体内存在反常密码子的多态性现象,初步建立了密码子进化树,并提出了原始氨酰基-tRNA合成酶可能在密码子进一步分化中起关键作用的观点。  相似文献   

3.
遗传密码子的设定表现出令人困惑的多态性特点 :不同氨基酸拥有的密码子的数目 ,除 5个外 ,从 1个到 6个都有 .这种特点显示出密码子无论在翻译行为还是进化轨迹上 ,都存在诸多的异质性 .因此 ,简并性一词的收敛含义 ,并不能表征这种多态性的进化内涵 .没有同义密码子的AUG(Met)和UGG (Trp)并无简并现象 .其余的密码子则可分为两大类 :一类是 ,4个同义密码子为 1组 ,具有相同的第 1、2位碱基 ,并遵循“3中读 2”的读出规则 .同组的 4个同义密码子 ,不过是来自同一个双字母原始密码子 (XYN)的孑遗物 ,从这个意义上讲 ,也不宜视为简并现象 ;另一类则主要是 ,2个同义密码子为一组 ,并遵循“3中读 3”读出规则 .它们是由编码 2个氨基酸的双义原始密码子 ,第 3位的未定碱基N进一步设定形成 .至于有 6个同义密码子的 ,特别令人困感不解的组别 ,实际上是 4 + 2个 ,这启示它们可能源于上述两大类 .遗传密码子多态性的起源 ,可能始于最初阶段 ,氨基酸同某类寡核苷酸的起始二联体的相互作用 ,而完成于所有的双义原始密码子的第 3位碱基的分化 .这种进化轨迹被传统的简并性一词所模糊 ,并导致鉴定各有关理论可信性的坚实依据和令不同观点取得共识的基础被掩盖起来 .这可能就是在遗传密码子起源领域里 ,长期存在着众  相似文献   

4.
We developed new criteria for determining the library size in a saturation mutagenesis experiment. When the number of all possible distinct variants is large, any of the top-performing variants (e.g., any of the top three) is likely to meet the design requirements, so the probability that the library contains at least one of them is a sensible criterion for determining the library size. By using a criterion of this type, one may significantly reduce the library size and thus save costs and labor while minimally compromising the quality of the best variant discovered. We present the probabilistic tools underlying these criteria and use them to compare the efficiencies of four randomization schemes: NNN, which uses all 64 codons; NNB, which uses 48 codons; NNK, which uses 32 codons; and MAX, which assigns equal probabilities to each of the 20 amino acids. MAX was found to be the most efficient randomization scheme and NNN the least efficient. TopLib, a computer program for carrying out the related calculations, is available through a user-friendly Web server.  相似文献   

5.
Tang L  Gao H  Zhu X  Wang X  Zhou M  Jiang R 《BioTechniques》2012,52(3):149-158
Site-saturation mutagenesis is a powerful tool for protein optimization due to its efficiency and simplicity. A degenerate codon NNN or NNS (K) is often used to encode the 20 standard amino acids, but this will produce redundant codons and cause uneven distribution of amino acids in the constructed library. Here we present a novel "small-intelligent" strategy to construct mutagenesis libraries that have a minimal gene library size without inherent amino acid biases, stop codons, or rare codons of Escherichia coli by coupling well-designed combinatorial degenerate primers with suitable PCR-based mutagenesis methods. The designed primer mixture contains exactly one codon per amino acid and thus allows the construction of small-intelligent mutagenesis libraries with one gene per protein. In addition, the software tool DC-Analyzer was developed to assist in primer design according to the user-defined randomization scheme for library construction. This small-intelligent strategy was successfully applied to the randomization of halohydrin dehalogenases with one or two randomized sites. With the help of DC-Analyzer, the strategy was proven to be as simple as NNS randomization and could serve as a general tool to efficiently randomize target genes at positions of interest.  相似文献   

6.
Hydropathic anti-complementarity of amino acids based on the genetic code   总被引:15,自引:0,他引:15  
An interesting pattern in the genetic code has been discovered. Codons for hydrophilic and hydrophobic amino acids on one strand of DNA are complemented by codons for hydrophobic and hydrophilic amino acids on the other DNA strand, respectively. The average tendency of codons for "uncharged" (slightly hydrophilic) amino acids is to be complemented by codons for "uncharged" amino acids.  相似文献   

7.
A computer program (PINCERS) is described for use in the design of synthetic genes and mixed-probe DNA sequences. A protein sequence is reverse translated with generation of synonymous codons at each position producing a degenerate sequence. In order to locate potential restriction enzyme sites, the degenerate sequence is searched with a library of restriction enzymes for sites that utilize any combination of synonymous codons. These sites are indicated in a map so that they may be incorporated into the synthetic gene sequence. The program allows the user to select the appropriate codon usage table for the organism of interest and then to set a threshold usage frequency below which codons are not generated. PINCERS may also be used to assist in planning the synthesis of mixed-probe DNA sequences for cross-hybridization experiments. It can identify regions of specified length with the protein sequence that have the least overall degeneracy, thereby minimizing the number of probes to be synthesized and, therefore, maximizing the concentration of a given probe sequence.  相似文献   

8.
In this study, we determine the mutation relation among 333 H5N1 hemagglutinins of influenza A viruses according to their amino acid and RNA codon sequences. Then, we calculate seven probabilistic numbers, which have been developed by us since 1999, for each amino acid in these hemagglutinins. With the seven numeric numbers as independents and the probability of occurrence of mutation at each hemagglutinin position as dependent, we use the logistic regression to model 967 missense point mutations from 333 hemagglutinins to get the population estimates. Thereafter, we predict the future mutation positions in H5N1 hemagglutinin. Finally, we use the translation probabilities between RNA codons and mutated amino acids to predict the would-be-mutated amino acids in H5N1 hemagglutinin.  相似文献   

9.
During the evolution of living organisms, a natural selection event occurs toward the optimization of their genomes regarding the usage of codons. During this process which is known as codon bias, a set of preferred codons is naturally defined in the genome of a given organism, since there are 61 possible codons (plus 3 stop codons) to 20 amino acids. Such event leads to optimization of metabolic cellular processes such as translational efficiency, RNA stability and energy saving. Although we know why, we do not know how exactly a set of preferred codons for each amino acid is defined for a given genome considering that the usage frequency of each synonymous codons is peculiar to each organism. In order to help answering this question, we analyzed the usage frequency of codons which are similar to stop codons, since a minor mutation on these codons may lead to a stop codon into the open reading frame compromising the protein expression as a result. We found a reduced use of those codons in Xanthomomas axonopodis pv. citri which presents an optimized genome regarding codon usage. On the other hand, such codons are more often used in Xylella fastidiosa, which does not seem to have established codon preferences as previously shown. Our results support that a set of preferred codons is not randomly selected and propose new ideas to the field warranting further experiments in this regard.  相似文献   

10.
M A Soto  C J Tohá 《Bio Systems》1985,18(2):209-215
A quantitative rationale for the evolution of the genetic code is developed considering the principle of minimal hardware. This principle defines an optimal code as one that minimizes for a given amount of information encoded, the product of the number of physical devices used by the average complexity of each device. By identifying the number of different amino acids, number of nucleotide positions per codon and number of base types that can occupy each such position with, respectively, the amount of information, number of devices and the complexity, we show that optimal codes occur for 3, 7 and 20 amino acids with codons having a single, two and three base positions per codon, respectively. The advantage of a code of exactly 4 symbols is deduced, as well as a plausible evolutionary pathway from a code of doublets to triplets. The present day code of 20 amino acids encoded by 64 codons is shown to be the most optimal in an absolute sense. Using a tetraplet code further evolution to a code in which there would be 55 amino acids is in principle possible, but such a code would deviate slightly more than the present day code from the minimal hardware configuration. The change from a triplet code to a tetraplet code would occur at about 32 amino acids. Our conclusions are independent of, but consistent with, the observed physico-chemical properties of the amino acids and codon structures. These correlations could have evolved within the constrains imposed by the minimal hardware principle.  相似文献   

11.
Codons for amino acids sharing similar chemical properties seem to cluster on the genetic codon table. Such a geographical distribution of the codons was exploited to create chemically synthesised DNA that encodes peptide libraries containing only a subset of the 20 natural amino acids. The frequency of each amino acid in the subset was further optimised by quantitatively manipulating the ratio of the four phosphoamidites during chemical synthesis of the libraries. Peptides encoded by such libraries show a reduced complexity and could be enriched in peptides of a desired property, which are thus more suitable when screening for functional peptides. Proof of concept for the codon-biased design of peptide libraries was shown by design, synthesis, and characterisation of a transmembrane peptide library that contains >80% transmembrane peptides, representing a 160-fold enrichment compared with a fully randomised library.  相似文献   

12.
In addition to the well‐established sense‐antisense complementarity abundantly present in the nucleic acid world and serving as a basic principle of the specific double‐helical structure of DNA, production of mRNA, and genetic code‐based biosynthesis of proteins, sense‐antisense complementarity is also present in proteins, where sense and antisense peptides were shown to interact with each other with increased probability. In nucleic acids, sense‐antisense complementarity is achieved via the Watson‐Crick complementarity of the base pairs or nucleotide pairing. In proteins, the complementarity between sense and antisense peptides depends on a specific hydropathic pattern, where codons for hydrophilic and hydrophobic amino acids in a sense peptide are complemented by the codons for hydrophobic and hydrophilic amino acids in its antisense counterpart. We are showing here that in addition to this pattern of the complementary hydrophobicity, sense and antisense peptides are characterized by the complementary order‐disorder patterns and show complementarity in sequence distribution of their disorder‐based interaction sites. We also discuss how this order‐disorder complementarity can be related to protein evolution.  相似文献   

13.
DNATagger is a web-based tool for coloring and editing DNA, RNA and protein sequences and alignments. It is dedicated to the visualization of protein coding sequences and also protein sequence alignments to facilitate the comprehension of evolutionary processes in sequence analysis. The distinctive feature of DNATagger is the use of codons as informative units for coloring DNA and RNA sequences. The codons are colored according to their corresponding amino acids. It is the first program that colors codons in DNA sequences without being affected by "out-of-frame" gaps of alignments. It can handle single gaps and gaps inside the triplets. The program also provides the possibility to edit the alignments and change color patterns and translation tables. DNATagger is a JavaScript application, following the W3C guidelines, designed to work on standards-compliant web browsers. It therefore requires no installation and is platform independent. The web-based DNATagger is available as free and open source software at http://www.inf.ufrgs.br/~dmbasso/dnatagger/.  相似文献   

14.
Genetic code development by stop codon takeover   总被引:5,自引:0,他引:5  
A novel theoretical consideration of the origin and evolution of the genetic code is presented. Code development is viewed from the perspective of simultaneously evolving codons, anticodons and amino acids. Early code structure was determined primarily by thermodynamic stability considerations, requiring simplicity in primordial codes. More advanced coding stages could arise as biological systems became more complex and precise in their replication. To be consistent with these ideas, a model is described in which codons become permanently associated with amino acids only when a codon-anticodon pairing is strong enough to permit rapid translation. Hence all codons are essentially chain-termination or "stop" codons until tRNA adaptors evolve having the ability to bind tightly to them. This view, which draws support from several lines of evidence, differs from the prevalent thinking on code evolution which holds that codons specifying newer amino acids were derived from codons encoding older amino acids.  相似文献   

15.
Ren Zhang M.D. 《Amino acids》1997,12(2):167-177
Summary Based on the genetic codes and a simple theorem for the geometrical property of the regular tetrahedron, each amino acid is mapped onto a unique point in a 3-dimensional tetrahedral space. The distribution of the 20 mapping points for 20 amino acids is studied in detail. It is found that the mapping points for the hydrophobic and hydrophilic amino acids are distributed at distinct regions in the 3-dimensional space. A plane separating the two kinds of points satisfactorily based on the Fisher's algorithm has been calculated. It is shown that the codons coding for the hydrophobic amino acids are constituted dominantly by the bases of keto group, i.e., G and T. While the codons coding for the hydrophilic amino acids are constituted dominantly by the bases of amino group, i.e., A and C. The biological implication of the mapping points and the separating plane has been discussed in some details.  相似文献   

16.
Explaining the apparent non-random codon distribution and the nature and number of amino acids in the ‘standard’ genetic code remains a challenge, despite the various hypotheses so far proposed. In this paper we propose a simple new hypothesis for code evolution involving a progression from singlet to doublet to triplet codons with a reading mechanism that moves three bases each step. We suggest that triplet codons gradually evolved from two types of ambiguous doublet codons, those in which the first two bases of each three-base window were read (‘prefix’ codons) and those in which the last two bases of each window were read (‘suffix’ codons). This hypothesis explains multiple features of the genetic code such as the origin of the pattern of four-fold degenerate and two-fold degenerate triplet codons, the origin of its error minimising properties, and why there are only 20 amino acids. Reviewing Editor: Dr. Laura Landweber An erratum to this article can be found at .  相似文献   

17.
Selection Intensity for Codon Bias   总被引:26,自引:7,他引:19       下载免费PDF全文
D. L. Hartl  E. N. Moriyama    S. A. Sawyer 《Genetics》1994,138(1):227-234
The patterns of nonrandom usage of synonymous codons (codon bias) in enteric bacteria were analyzed. Poisson random field (PRF) theory was used to derive the expected distribution of frequencies of nucleotides differing from the ancestral state at aligned sites in a set of DNA sequences. This distribution was applied to synonymous nucleotide polymorphisms and amino acid polymorphisms in the gnd and putP genes of Escherichia coli. For the gnd gene, the average intensity of selection against disfavored synonymous codons was estimated as approximately 7.3 X 10(-9); this value is significantly smaller than the estimated selection intensity against selectively disfavored amino acids in observed polymorphisms (2.0 X 10(-8)), but it is approximately of the same order of magnitude. The selection coefficients for optimal synonymous codons estimated from PRF theory were consistent with independent estimates based on codon usage for threonine and glycine. Across 118 genes in E. coli and Salmonella typhimurium, the distribution of estimated selection coefficients, expressed as multiples of the effective population size, has a mean and standard deviation of 0.5 +/- 0.4. No significant differences were found in the degree of codon bias between conserved positions and replacement positions, suggesting that translational misincorporation is not an important selective constraint among synonymous polymorphic codons in enteric bacteria. However, across the first 100 codons of the genes, conserved amino acids with identical codons have significantly greater codon bias than of either synonymous or nonidentical codons, suggesting that there are unique selective constraints, perhaps including mRNA secondary structures, in this part of the coding region.  相似文献   

18.
Many existing derivations of knowledge-based statistical pair potentials invoke the quasichemical approximation to estimate the expected side-chain contact frequency if there were no amino acid pair-specific interactions. At first glance, the quasichemical approximation that treats the residues in a protein as being disconnected and expresses the side-chain contact probability as being proportional to the product of the mole fractions of the pair of residues would appear to be rather severe. To investigate the validity of this approximation, we introduce two new reference states in which no specific pair interactions between amino acids are allowed, but in which the connectivity of the protein chain is retained. The first estimates the expected number of side-chain contracts by treating the protein as a Gaussian random coil polymer. The second, more realistic reference state includes the effects of chain connectivity, secondary structure, and chain compactness by estimating the expected side-chain contrast probability by placing the sequence of interest in each member of a library of structures of comparable compactness to the native conformation. The side-chain contact maps are not allowed to readjust to the sequence of interest, i.e., the side chains cannot repack. This situation would hold rigorously if all amino acids were the same size. Both reference states effectively permit the factorization of the side-chain contact probability into sequence-dependent and structure-dependent terms. Then, because the sequence distribution of amino acids in proteins is random, the quasichemical approximation to each of these reference states is shown to be excellent. Thus, the range of validity of the quasichemical approximation is determined by the magnitude of the side-chain repacking term, which is, at present, unknown. Finally, the performance of these two sets of pair interaction potentials as well as side-chain contact fraction-based interaction scales is assessed by inverse folding tests both without and with allowing for gaps.  相似文献   

19.
V Sitaramam 《FEBS letters》1989,247(1):46-50
The physical properties of amino acids were investigated in order to evaluate their possible relationship to the assignment of codons for amino acids in the genetic code. A comparison of the interconversion probability between amino acids and the distances between the amino acids for individual physical properties revealed a striking hierarchy among the physical properties. Surprisingly, it is the long-range/solvent interactions and not the short-range/stereochemical properties which are preferentially conserved in the genetic code.  相似文献   

20.
A better understanding of the origin and organization of genetic codons is possible based on the metabolic relatedness of amino acids. Amino acids with similar codons (anticodons) usually have the same or similar precursor molecule, even if the amino acids are not related physico-chemically. These observations suggest, that amino acid precursor molecules and enzymes responsible for the synthesis of amino acids "must have seen" the protein synthesis machinery, and played a fundamental role in the codon (anticodon) organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号