首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Induced pluripotent stem (iPS) cells derived from terminally differentiated human fibroblasts are reprogrammed to possess stem cell like properties. However, the extent to which iPS cells exhibit unique properties of the human embryonic stem (hES) cell cycle remains to be established. hES cells are characterized by an abbreviated G1 phase (~ 2.5 h) and accelerated organization of subnuclear domains that mediate the assembly of regulatory machinery for histone gene expression [i.e., histone locus bodies (HLBs)]. We therefore examined cell cycle parameters of iPS cells in comparison to hES cells. Analysis of DNA synthesis [5-bromo-2'-deoxy-uridine (BrdU) incorporation], cell cycle distribution (FACS analysis and Ki67 staining) and subnuclear organization of HLBs [immunofluorescence microscopy and fluorescence in situ hybridization (FISH)] revealed that human iPS cells have a short G1 phase (~ 2.5 h) and an abbreviated cell cycle (16-18 h). Furthermore, HLBs are formed and reorganized rapidly after mitosis (within 1.5-2 h). Thus, reprogrammed iPS cells have cell cycle kinetics and dynamic subnuclear organization of regulatory machinery that are principal properties of pluripotent hES cells. Our findings support the concept that the abbreviated cell cycle of hES and iPS cells is functionally linked to pluripotency.  相似文献   

3.
4.
 Characteristic chromosome aberrations have been identified in various tumors. Fluorescence in situ hybridization (FISH) using specific probes that are generated by vector cloning or in vitro amplification and labeled with fluorescent dyes allow for the detection of these genetic changes in interphase cells. This technique, that is also referred to as ”interphase cytogenetics”, can be performed in cytological preparations as well as in sections of routinely formaldehyde-fixed and paraffin-embedded tissue. In cancer research and diagnostics, interphase cytogenetics by FISH is used to detect numerical chromosome changes and structural aberrations, e.g., translocations, deletions, or amplifications. In this technical overview, we explain the principles of the FISH method and provide protocols for FISH in cytological preparations and paraffin sections. Moreover, possible applications of FISH are discussed. Accepted: 22 July 1997  相似文献   

5.
Advances in fluorescence in situ hybridization   总被引:14,自引:0,他引:14  
Anton K. Raap   《Mutation research》1998,400(1-2):287-298
The techniques of in situ hybridization (ISH) are widely applied for analyzing the genetic make-up and RNA expression patterns of individual cells. This review focusses on a number of advances made over the last 5 years in the fluorescence ISH (FISH) field, i.e., Fiber-FISH, Multi-colour chromosome painting, Comparative Genomic Hybridization, Tyramide Signal Amplification and FISH with Polypeptide Nucleic Acid and Padlock probes.  相似文献   

6.
7.
8.
9.
10.
Accurate assessment of human epidermal growth factor receptor (HER) 2 is essential for efficient selection of patients who may benefit from therapies targeting this surface receptor (e.g., trastuzumab). Intratumoral heterogeneity of HER2 expression may potentially contribute to inaccurate assessment of HER2 status. To clarify intratumoral heterogeneity of HER2 expression and its potential clinical impact on assessment of HER2 status, we analyzed 148 endoscopic biopsy specimens and 117 excisional tumor specimens collected from 148 patients with primary gastric cancer. Specifically, we assessed HER2 protein overexpression and gene amplification using, respectively, immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). There were 28 IHC-positive cases and 25 FISH-positive cases among these 148 patients. Heterogeneous HER2 protein expression was demonstrated in 23 of 29 (79.3%) IHC-positive cases, while gene expression heterogeneity was found in 11 of 25 (44.0%) FISH-positive cases. Intratumoral heterogeneity was the main reason of discordant results between IHC and FISH or between endoscopic biopsy and excisional tumor specimens. The clinical significance and impact of intratumoral HER2 expression heterogeneity on treatment outcome in gastric cancer require further studies.  相似文献   

11.
12.
13.
ERV9 is a class I family of human endogenous retroviral sequences. Somatic cell hybrid genomic hybridization experiments using a mono-chromosomal panel indicate the presence of approximately 120 ERV9 loci in the human genome distributed on most chromosomes. Fluorescence in situ hybridization (FISH) using an ERV9 cDNA probe containing gag, pol and env sequences, verified this observation and a consistent signal was found at the chromosome region 11q13.3-->q13.5. By analysis of a panel of radiation hybrids, an ERV9 locus was mapped to within a 300-kbp region at the chromosome site 11q13. The marker cCLGW567 and the locus MAP3K11/D11S546 centromeric and telomeric flanked it, respectively. Northern blot analysis, using an ERV9 LTR probe, indicated that most normal tissues examined expressed low abundant ERV9 LTR driven mRNAs of various sizes. The most prominent expression was found in adrenal glands and testis. However, the level of expression varied in the same tissues among different individuals indicating that ERV9 mRNA expression probably is inducible in certain tissues or at various cell stages.  相似文献   

14.
The DNA of human chromosomes terminates in several kilobases of telomere repeats that are gradually lost with; age and with replication in vitro. Defective telomere maintenance has been shown to be causally linked to cell cycle exit and apoptosis. In order to overcome the limitations imposed by Southern blotting, we have established a quantitative fluorescence in situ hybridization (Q-FISH) technique. This technique allows estimation of telomere length in specific chromosome arms from metaphase cell preparations. Furthermore, we have extended quantitative in situ hybridization to flow cytometry (flow FISH) in order to obtain information on the mean telomere repeat content in suspended cells. Telomere length in granulocytes, monocytes, CD8 and CD4 T lymphocytes and natural killer cells was found to differ slightly in the peripheral blood of adults. However, strikingly longer telomeres were observed in B lymphocytes (approximately 1.3 kb longer), suggesting a functional role for telomere maintenance in this cell subset. In summary, Q-FISH and flow FISH represent new methods for measuring telomere length in single cells and allow studies of telomere dynamics in haematopoietic subpopulations at various stages of normal and abnormal antigen responses.  相似文献   

15.
Screening for specific genetic aberrations by fluorescence and chromogenic in situ hybridization (fluorescence in situ hybridization (FISH) and chromogenic in situ hybridization (CISH)) can reveal associations with tumor types or subtypes, cellular morphology and clinical behavior. FISH and CISH methodologies are based on the specific annealing (hybridization) of labeled genomic sequences (probes) to complementary nucleic acids within fixed cells to allow their detection, quantification and spatial localization. Formalin-fixed paraffin embedded (FFPE) material is the most widely available source of tumor samples. Increasingly, tissue microarrays (TMAs) consisting of multiple cores of FFPE material are being used to enable simultaneous analyses of many archival samples. Here we describe robust protocols for the FISH and CISH analyses of genetic aberrations in FFPE tissue, including TMAs. Protocols include probe preparation, hybridization and detection. Steps are described to reduce background fluorescence and strip probes for repeat FISH analyses to maximize the use of tissue resources. The basic protocol takes 2-3 d to complete.  相似文献   

16.
Telomeres have been shown to gradually shorten during replicative aging in human somatic cells by Southern analysis. This study examines telomere shortening at the single cell level by fluorescence in situ hybridization (FISH). FISH and confocal microscopy of interphase human diploid fibroblasts (HDFs) demonstrate that telomeres are distributed throughout the nucleus with an interchromosomal heterogeneity in size. Analysis of HDFs at increasing population doubling levels shows a gradual increase in spot size, intensity, and detectability of telomeric signal. FISH of metaphase chromosomes prepared from young and old HDFs shows a heterogeneity in detection frequency for telomeres on chromosomes 1, 9, 15, and Y. The interchromosomal distribution of detection frequencies was similar for cells at early and late passage. The telomeric detection frequency for metaphase chromosomes also decreased with age. These observations suggest that telomeres shorten at similar rates in normal human somatic cels. T-antigen transformed HDFs near crisis contained telomere signals that were low compared to nontransformed HDFs. A large intracellular heterogeneity in telomere lengths was detected in two telomerase-negative cell lines compared to normal somatic cells and the telomerase-positive 293 cell line. Many telomerase-negative immortal cells had telomeric signals stronger than those in young HDFs, suggesting a different mechanism for telomere length regulation in telomerase-negative immortal cells. These studies provide an in situ demonstration of interchromosomal heterogeneity in telomere lengths. Furthermore, FISH is a reliable and sensitive method for detecting changes in telomere size at the single cell level.  相似文献   

17.
18.
Progresses and Applications of Fluorescence in Situ Hybridization   总被引:1,自引:0,他引:1  
The techniques of in situ hybridization (ISH) are widely adopted for analyzing the genetic make-up and RNA expression patterns of individual cells. There are four main criterions for evaluating this technique, including detection sensitivity, resolution, capacity and specificity. This review focuses on a number of advances made over the last years in the fluorescence in situ hybridization (FISH). These advances can be catagorized into several branches as follows: (1) Multicolor-FISH (mFISH), including conventional mFISH, combinatorial FISH, ratio labelling FISH, multicolor chromosome painting and comparative genomic hybridization (CGH); (2) Extended DNA fiber-FISH (EDF-FISH), including quantitative DNA fiber mapping (QDFM), molecular combing (MC) and dynamic molecular combing (DMC); (3)In situ PCR-based FISH; (4) Bacterial (or yeast) artificial chromosome-FISH (BAC-FISH or YAC-FISH); (5) Tyramide signal amplification-FISH (TSA-FISH); (6) Polypeptide nucleic acid-FISH (PNA-FISH) and (7) padlock-FISH.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号