首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium-dependent protein kinases (CDPKs) control plant development and response to various stress environments through the important roles in the regulation of Ca2+ signaling. Thirty-one CDPK genes have been identified in the rice genome by a complete search of the genome based upon HMM profiles. In this study, the expression of this gene family was analyzed using the Affymetrix rice genome array in three rice cultivars: Minghui 63, Zhenshan 97, and their hybrid Shanyou 63 independently. Twenty-seven tissues sampled throughout the entire rice life-span were studied, along with three hormone treatments (GA3, NAA and KT), applied to the seedling at the trefoil stage. All 31 genes were found to be expressed in at least one of the experimental stages studied and revealed diverse expression patterns. We identified differential expression of the OsCPK genes in the stamen (1 day before flowering), the panicle (at the heading stage), the endosperm (days after pollination) and also in callus, in all three cultivars. Eight genes, OsCPK2, OsCPK11, OsCPK14, OsCPK22, OsCPK25, OsCPK26, OsCPK27 and OsCPK29 were found dominantly expressed in the panicle and the stamen, and five genes, OsCPK6, OsCPK7, OsCPK12, OsCPK23 and OsCPK31 were up-regulated in the endosperm stage. The OsCPK genes were also found to be regulated in rice seedlings subjected to different hormone treatment conditions, however their expression were not the same for all varieties. These diverse expression profiles trigger the functional analysis of the CDPK family in rice. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
KT/HAK/KUP potassium transporter protein-encoding genes constitute a large family in the plant kingdom. The KT/HAK/KUP family is important for various physiological processes of plant life. In this study, we identified 27 potential KT/HAK/KUP family genes in rice (Oryza sativa) by database searching. Analysis of these KT/HAK/KUP family members identified three conserved motifs with unknown functions, and 11-15 trans-membrane segments, most of which are conserved. A total of 144 putative cis-elements were found in the 2 kb upstream region of these genes, of which a Ca2+-responsive cis-element, two light-responsive cis-elements, and a circadian-regulated cis-element were identified in the majority of the members, suggesting regulation of these genes by these signals. A comprehensive expression analysis of these genes was performed using data from microarrays hybridized with RNA samples of 27 tissues covering the entire life cycle from three rice genotypes, Minghui 63, Zhenshan 97, and Shanyou 63. We identified preferential expression of two OsHAK genes in stamen at 1 day before flowering compared with all the other tissues. OsHAK genes were also found to be differentially upregulated or downregulated in rice seedlings subjected to treatments with three hormones. These results would be very useful for elucidating the roles of these genes in growth, development, and stress response of the rice plant.  相似文献   

3.
Thioredoxin (Trx) proteins play important biological functions in cells by changing redox via thioldisulfied exchange. This system is especially widespread in plants. Through database search, we identified 30 potential Trx protein-encoding genes (OsTrx) in rice (Oryza sativa L.). An analysis of the complete set of OsTrx proteins is presented here, including chromosomal location, conserved motifs, domain duplication, and phylogenetic relationships. Our findings suggest that the expansion of the Trx gene family in rice, in large part, occurred due to gene duplication. A comprehensive expression profile of Trx genes family was investigated by analyzing the signal data of this family extracted from the whole genome microarray analysis of Minghui 63 and Zhenshan 97, two indica parents, and their hybrid Shanyou 63, using 27 different tissues representing the entire life cycle of rice. Results revealed specific expression of some members at germination transition as well as the 3-leaf stage during the vegetative growth phase of rice. OsTrx genes were also found to be differentially up- or down-regulated in rice seedlings subjected to treatments of phytohormones and light/dark conditions. The expression levels of the OsTrx genes in the different tissues and under different treatments were also checked by RT-PCR analysis. The identification of OsTrx genes showing differential expression in specific tissues among different genotypes or in response to different environmental cues could provide a new avenue for functional analyses in rice.  相似文献   

4.

Background

The B-box (BBX) -containing proteins are a class of zinc finger proteins that contain one or two B-box domains and play important roles in plant growth and development. The Arabidopsis BBX gene family has recently been re-identified and renamed. However, there has not been a genome-wide survey of the rice BBX (OsBBX) gene family until now.

Methodology/Principal Findings

In this study, we identified 30 rice BBX genes through a comprehensive bioinformatics analysis. Each gene was assigned a uniform nomenclature. We described the chromosome localizations, gene structures, protein domains, phylogenetic relationship, whole life-cycle expression profile and diurnal expression patterns of the OsBBX family members. Based on the phylogeny and domain constitution, the OsBBX gene family was classified into five subfamilies. The gene duplication analysis revealed that only chromosomal segmental duplication contributed to the expansion of the OsBBX gene family. The expression profile of the OsBBX genes was analyzed by Affymetrix GeneChip microarrays throughout the entire life-cycle of rice cultivar Zhenshan 97 (ZS97). In addition, microarray analysis was performed to obtain the expression patterns of these genes under light/dark conditions and after three phytohormone treatments. This analysis revealed that the expression patterns of the OsBBX genes could be classified into eight groups. Eight genes were regulated under the light/dark treatments, and eleven genes showed differential expression under at least one phytohormone treatment. Moreover, we verified the diurnal expression of the OsBBX genes using the data obtained from the Diurnal Project and qPCR analysis, and the results indicated that many of these genes had a diurnal expression pattern.

Conclusions/Significance

The combination of the genome-wide identification and the expression and diurnal analysis of the OsBBX gene family should facilitate additional functional studies of the OsBBX genes.  相似文献   

5.
6.
7.
The cloned bacterial blight (BB) resistance gene Xa21 was transferred into Minghui63, a widely used restorer line of indica hybrid rice in China, through an Agrobacterium-mediated system. Molecular and resistance analyses revealed that the Xa21 gene was integrated in the genomes of transgenic plants and their progeny inherited resistance stably. For the purpose of hybrid breeding, Xa21 transgenic homozygous restorer lines were selected through `within-lane' dosage comparison of hybridization signal in combination with PCR and resistance analyses. The selected transgenic restorer lines were then crossed with a commonly used sterile line, Zhenshan97A, to produce Xa21 transgenic hybrid rice, Shanyou63-Xa21. The hybrid rice plants with Xa21 displayed high broad-spectrum resistance to Xanthomonas oryzae pv. oryzae (Xoo) races and maintained elite agronomic characters of Shanyou63. The propagation of this BB-resistant hybrid variety with Xa21 will benefit rice production.  相似文献   

8.
采用套袋自交结实率和自然结实率为主,花粉育性和田间目测整株育性为辅的综合性状,判定新型细胞质雄性不育系马协A以及它与明恢63的杂种F_1、F_2和BF_1的植株育性,并以野败型珍汕97A作对照,比较研究了其不育性的遗传规律。结果表明,马协A与珍汕97A不育性的遗传均由两对基因控制,但新型细胞质雄性不育系马协A两对基因的作用方式与珍汕97A不同。前者F_2群体的育性分离符合9:3:3:1的比例,BF_1符合1:2:1的比例;后者相应群体则符合12:3:1和2:1:1的比例,两对基因间表现为显性上位。斯米尔诺夫检验也表明马协A/明恢63和珍汕97A/明恢63的F_2群体的结实率频率分布差异显著(P<0.01)。并讨论了细胞质雄性不育的遗传机理及分子基础。  相似文献   

9.
Kou Y  Qiu D  Wang L  Li X  Wang S 《Plant cell reports》2009,28(1):113-121
Tubby-like protein family has been identified in various multicellular organisms, indicating its fundamental functions in the organisms. However, the roles of plant tubby-like proteins are unknown. In this study, we have defined the tubby-like protein gene (OsTLP) family with 14 members in rice. Most of the OsTLPs harbor a tubby domain in their carboxyl terminus and an F-box domain in the amino terminus. The expression of all the OsTLPs was induced on infection of Xanthomonas oryzae pv. oryzae, which causes bacterial blight, one of the most devastating diseases of rice worldwide. The maximal expression levels were observed at 2–8 h after infection for all the genes. Eight of the 14 OsTLPs were also responsive to wounding. All the OsTLPs showed differential expression in different tissues at different developmental stages. However, four pairs of the 14 OsTLPs, with each pair having high sequence similarity and distributing on the similar position of different chromosomes, showed similar expression pattern in different tissues, indicating their direct relationship in evolution. These results suggest that the OsTLP family is involved in host–pathogen interaction and it may be also associated with other physiological and developmental activities. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Lu L  Zhou F  Zhou Y  Fan X  Ye S  Wang L  Chen H  Lin Y 《Plant cell reports》2012,31(7):1173-1187
Polygalacturonase-inhibiting proteins (PGIPs) are typically leucine-rich repeat (LRR) proteins that can inhibit the activity of fungal polygalacturonases (PGs). In this study, two new Ospgip genes, named Ospgip6 and Ospgip7 with consensus sequence of ten imperfect LRR motif located on rice chromosomes 8 and 9, were identified using BLAST analysis. Both of them appear to be extracellular glycoproteins. To have a global view of the dynamic gene expression pattern, seven Ospgip genes were first analyzed using the Affymetrix rice genome array data from online resource. All of these seven Ospgip genes showed variable expression patterns among tissues/organs. In order to further investigate the potential function of these Ospgip genes, the responses of Ospgip genes to the treatment of various phytohormones (abscisic acid, brassinosteroid, gibberellic acid, 3-indole acetic acid, jasmonic acid, kinetin, naphthalene acetic acid and salicylic acid) as well as fungal infection were analyzed by real-time PCR using time course array. Generally, all the Ospgip genes were slightly up-regulated in the indica rice cultivar Minghui 63 under GA(3), KT and NAA treatments (except Ospgip2, which was down-regulated under KT treatment). In the japonica rice cultivar Zhonghua 11, Ospgip genes were regulated by most treatments with the response time variability. We also analyzed putative cis-elements in the promoter regions of Ospgip genes. This dataset provided a versatile resource to understand the regulatory network of Ospgip genes during the process of phytohormones treatment and fungal infection in the model monocotyledonous plant, rice, and could aid in the transgenic breeding against rice fungal diseases. KEY MESSAGE: All the seven Ospgip genes showed variable expression patterns in Minghui 63 and their expressions were regulated by different phytohormone treatments or fungal infection in Minghui 63 and Zhonghua 11.  相似文献   

11.
A better understanding of the genetics of seedling characteristics in rice could be helpful in improving rice varieties. Zhenshan 97 and Minghui 63, the parents of Shanyou 63, an elite hybrid developed during the last decade in China, vary greatly with respect to their physiological and morphological traits at the seedling growth stage. In this study, we used a population of 240 recombinant inbred lines derived from a cross between Zhenshan 97 and Minghui 63 to identify quantitative trait loci (QTL) for seedling characteristics. All plant material was grown in hydroponic culture. Data for the following characters were collected at 30 days and 40 days post-sowing: plant height, shoot dry matter weight (SDW), maximum root length, root dry weight (RDW), total dry weight , and root-shoot ratio (the ratio of SDW to RDW). Analysis using composite interval mapping detected 16 QTL for the six traits in 30-day-old seedlings. Of these 16 QTL, Minghui 63 alleles increased trait values at only two of them. The QTL in the vicinity of R3166 on chromosome 5 simultaneously influenced PH, SDW, MRL, RDW, and TDW in the same direction. Twenty QTL were detected for the same traits in the 40-day-old seedlings. However, at this stage Minghui 63 alleles increased trait values at eight QTL. The QTL linked to R3166 also affected PH, SDW, MRL, RDW, and TDW. Only four QTL were common to the two stages. These results clearly indicate that different genes (QTL) control the same traits during different time intervals. Zhenshan 97 alleles had positive effects during the first 30 days of seedling growth, but thereafter the positive effects of Minghui 63 alleles on seedling growth gradually became more pronounced.  相似文献   

12.
Glutamate dehydrogenases (GDH, EC 1.4.1.2~4) are ubiquitous enzymes encoded by GDH genes. So far, at least two GDH members have been characterized in plants, but most members of this family in rice remains to be characterized. Here, we show that four putative GDH genes (OsGDH1-4) are present in the rice genome. The GDH sequences from rice and other species can be classified into two types (I and II). OsGDH1-3 belonged to type II genes, whereas OsGDH4 belonged to type I like gene. Our data implied that the expansion rate of type I genes was much slower than that of type II genes and species-specific expansion contributed to the evolution of type II genes in plants. The expression levels of the different members of GDH family in rice were evaluated using quantitative real-time PCR and microarray analysis. Gene expression patterns revealed that OsGDH1, OsGDH2, and OsGDH4 are expressed ubiquitously in various tissues, whereas OsGDH3 expression is glumes and stamens specific. The expression of the OsGDH family members responded differentially to nitrogen and phosphorus-deprivation, indicating their roles under such stress conditions. Implications of the expression patterns with respect to the functions of these genes were discussed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.
15.
Hybrid rice ( Oryza sativa L. ) seedling is more vigorous in root development and plant growth than its parental lines in the tested indica rice of hybridized combination (Shanyou 63 (Fl): Zhenshan 97A × ♂Minghui 63). Analysis of the difference in gene expression between the hybrid Fl and its parental seedlings by means of mRNA differential display indicated that gene expression of the parental lines was obviously altered the hybrid Fl both in quantity and quality., Quantitatively, there were over-expression and under-expression of genes in hybrid Fl with genetic expression trend forwards a single parent. Qualititatively, hybrid Fl could have specific gene expression, single parem (maternal or paternal) gene silence, co-suppression of paternal genes, and single paternal gene expression. The relationship between heterosis formation and alteration of gene expression of parental lines in hybrid Fl was also discussed.  相似文献   

16.
"Zhenshan 97" is the female parent of a number of widely used hybrids for rice production in China. However, this line is of poor quality because of a high amylose content (AC), a hard gel consistency (GC) and a low gelatinization temperature (GT), together with a chalky endosperm. It had been determined that the three traits for cooking and eating quality, AC, GC and GT, are controlled by the Waxy locus and/or the tightly linked genomic region. In this study we improved the eating and cooking quality of Zhenshan 97 by introgressing the Waxy gene region from Minghui 63 (wx-MH), a restorer line, that has medium AC, soft GC and high GT. The wx-MH fragment was transferred to Zhenshan 97B by three backcrosses and one selfing, then from Zhenshan 97B to Zhenshan 97A by a cross and a backcross. Molecular marker-assisted selection was applied in the series to select for individuals carrying wx-MH, to identify recombination between the Waxy and flanking markers, and also to recover the genetic background of the recurrent parent. According to the marker genotypes, the improved versions of Zhenshan 97B and Zhenshan 97A, or Zhenshan 97B(wx-MH) and Zhenshan 97A(wx-MH), were the same as the originals except for the Waxy region of less than 6.1 cM in length. The selected lines and their hybrids with Minghui 63, or Shanyou 63(wx-MH), showed a reduced AC and an increased GC and GT, coupled with a reduced grain opacity. Field examinations of agronomic performance revealed that Zhenshan 97B(wx-MH) and Shanyou 63(wx-MH) were essentially the same as the originals except for a significant decrease in grain weight. The simultaneous improvement of AC, GA, GT and opacity, indicated that the Waxy region had major effects on the four quality traits. The improved versions of Zhenshan 97 A and B should be immediately useful in hybrid rice production.  相似文献   

17.
Ankyrin repeat (ANK) C3HC4-type RING finger (RF) genes comprise a large family in plants and play important roles in various physiological processes of plant life. In this study, we identified 187 ANK C3HC4-type RF proteins from 29 species with complete genomes and named the ANK C3HC4-type RF proteins the XB3-like proteins because they are structurally related to the rice (Oryza sativa) XB3. A phylogenetic relationship analysis suggested that the XB3-like genes originated from ferns, and the encoded proteins fell into 3 major groups. Among these groups, we found that the spacing between the metal ligand position 6 and 7, and the conserved residues, which was in addition to the metal ligand amino acids, in the C3HC4-type RF were different. Using a wide range of protein structural analyses, protein models were established, and all XB3-like proteins were found to contain two to seven ANKs and a C3HC4-type RF. The microarray data for the XB3-like genes of Arabidopsis, Oryza sative, Zea mays and Glycine max revealed that the expression of XB3-like genes was in different tissues and during different life stages. The preferential expression of XB3-like genes in specified tissues and the response to phytohormone and abiotic stress treatments of Arabidopsis and Zea mays not only confirmed the microarray analysis data but also demonstrated that the XB3-like proteins play roles in plant growth and development as well as in stress responses. Our data provide a very useful reference for the identification and functional analysis of members of this gene family and also provide a new method for the genome-wide analysis of gene families.  相似文献   

18.
You C  Dai X  Li X  Wang L  Chen G  Xiao J  Wu C 《Plant molecular biology》2010,74(6):617-629
Leucine-rich repeat proteins constitute a large gene family and play important roles in plant growth and development. Among them, Arabidopsis PIRL is a plant-specific class of intracellular Ras-group-related leucine-rich repeat proteins. In this study, we identified eight homologues of PIRLs in rice and designated them as OsIRL proteins. We described the gene structures, chromosome localizations, protein motifs, and phylogenetic relationships of the OsIRL gene family. The expression profiles of OsIRL genes were analyzed throughout the entire rice life cycle, along with light and three hormone stress conditions, using quantitative RT-PCR and microarray data. All OsIRL genes were expressed in at least one experimental stage and exhibited divergent expression patterns, with several genes showing preferential expression at specific stages. OsIRL4 and OsIRL5 showed higher expression levels under light compared to dark. OsIRL4 and OsIRL7 exhibited significant differential expression in response to hormone treatments. Six T-DNA or Tos17 insertion lines for five individual OsIRL genes were identified and examined morphologically. The comprehensive expression profile elucidated in this investigation together with the characterized insertion lines will provide a solid foundation for in-depth dissection of OsIRL functions.  相似文献   

19.
The cellulose synthase-like (ZmCSL) gene family of maize was annotated and its expression studied in the maize mesocotyl. A total of 28 full-length CSL genes and another 13 partial sequences were annotated; four are predicted to be pseudogenes. Maize has all of the CSL subfamilies that are present in rice, but the CSLC subfamily is expanded from 6 in rice to 12 in maize, and the CSLH subfamily might be reduced from 3 to 1. Unlike rice, maize has a gene in the CSLG subfamily, based on its sequence similarity to two genes annotated as CSLG in poplar. Light regulation of glycan synthase enzyme activities and CSL gene expression were analyzed in the mesocotyl. A Golgi-localized glucan synthase activity is reduced by ~50% 12 h after exposure to light. β-1,4-Mannan synthase activity is reduced even more strongly (>85%), whereas β-1,4-xylan synthase, callose synthase, and latent IDPase activity respond only slightly, if at all, to light. At least 17 of the CSL genes (42%) are expressed in the mesocotyl, of which four are up-regulated at least twofold, seven are down-regulated at least twofold, and six are not affected by light. The results contribute to our understanding of the structure of the CSL gene family in an important food and biofuel plant, show that a large percentage of the CSL genes are expressed in the specialized tissues of the mesocotyl, and demonstrate that members of the CSL gene family are differentially subject to photobiological regulation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Plants are considered an important food and nutrition source for humans. Despite advances in plant seed metabolomics, knowledge about the genetic and molecular bases of rice seed metabolomes at different developmental stages is still limited. Here, using Zhenshan 97 (ZS97) and Minghui 63 (MH63), we performed a widely targeted metabolic profiling in seeds during grain filling, mature seeds and germinating seeds. The diversity between MH63 and ZS97 was characterized in terms of the content of metabolites and the metabolic shifting across developmental stages. Taking advantage of the ultra‐high‐density genetic map of a population of 210 recombinant inbred lines (RILs) derived from a cross between ZS97 and MH63, we identified 4681 putative metabolic quantitative trait loci (mQTLs) in seeds across the three stages. Further analysis of the mQTLs for the codetected metabolites across the three stages revealed that the genetic regulation of metabolite accumulation was closely related to developmental stage. Using in silico analyses, we characterized 35 candidate genes responsible for 30 structurally identified or annotated compounds, among which LOC_Os07g04970 and LOC_Os06g03990 were identified to be responsible for feruloylserotonin and l ‐asparagine content variation across populations, respectively. Metabolite?agronomic trait association and colocation between mQTLs and phenotypic quantitative trait loci (pQTLs) revealed the complexity of the metabolite?agronomic trait relationship and the corresponding genetic basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号