首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The X-ray structure of the superantigen staphylococcal enterotoxin H (SEH) has been determined at 1.69 A resolution. In this paper we present two structures of zinc-free SEH (apoSEH) and one zinc-loaded form of SEH (ZnSEH). SEH exhibits the conventional superantigen (SAg) fold with two characteristic domains. In ZnSEH one zinc ion per SEH molecule is bound to the C-terminal beta-sheet in the region implicated for major histocompatibility complex class II (MHC class II) binding in SEA, SED and SEE. Surprisingly, the zinc ion has only two ligating amino acid residues His206 and Asp208. The other ligands to the zinc ion are two water molecules. An extensive packing interaction between two symmetry-related molecules in the crystal, 834 A(2)/molecule, forms a cavity that buries the zinc ions of the molecules. This dimer-like interaction is found in two crystal forms. Nevertheless, zinc-dependent dimerisation is not observed in solution, as seen in the case of SED. A unique feature of SEH as compared to other staphylococcal enterotoxins is a large negatively charged surface close to the Zn(2+) site. The interaction of SEH with MHC class II is the strongest known among the staphylococcal enterotoxins. However, SEH seems to lack a SEB-like MHC class II binding site, since the side-chain properties of structurally equivalent amino acid residues in SEH and those in SEB-binding MHC class II differ dramatically. There is also a structural flexibility between the domains of SEH. The domains of two apoSEH structures are related by a 5 degrees rotation leading to at most 3 A difference in C(alpha) positions. Since the T-cell receptor probably interacts with both domains, SEH by this rotation may modulate its binding to different TcR Vbeta-chains.  相似文献   

2.
Staphylococcal enterotoxin superantigens   总被引:3,自引:0,他引:3  
Staphylococcal enterotoxins (SE) are a family of structurally related proteins that are produced by Staphylococcus aureus. They play a role in the pathogenesis of food poisoning and are the most potent activators of T lymphocytes known. The receptors for SE on antigen-presenting cells are major histocompatibility complex class II molecules. Recent studies have shown that a complex of SE and major histocompatibility complex class II molecules is required for binding to the variable region of the T cell antigen receptor beta-chain. SE mitogenic activity is dependent on induction of interleukin 2, which may be intimately involved in the mechanism of SE toxicity. The minor lymphocyte-stimulating "endogenous" self-superantigen has recently been shown to be a retroviral gene product, so that this too is apparently a microbial superantigen. An understanding of the mechanism of action of these microbial superantigens has implications for normal and pathological immune functions.  相似文献   

3.
4.
Staphylococcal enterotoxin H induces V alpha-specific expansion of T cells   总被引:1,自引:0,他引:1  
Staphylococcal enterotoxin H (SEH) is a bacterial superantigen secreted by Staphylococcus aureus. Superantigens are presented on the MHC class II and activate large amounts of T cells by cross-linking APC and T cells. In this study, RT-PCR was used to show that SEH stimulates human T cells via the Valpha domain of TCR, in particular Valpha10 (TRAV27), while no TCR Vbeta-specific expansion was seen. This is in sharp contrast to all other studied bacterial superantigens, which are highly specific for TCR Vbeta. It was further confirmed by flow cytometry that SEH stimulation does not alter the levels of certain TCR Vbeta. In a functional assay addressing cross-reactivity, Vbeta binding superantigens were found to form one group, whereas SEH has different properties that fit well with Valpha reactivity. As SEH binds on top of MHC class II, an interaction between MHC and TCR upon SEH binding is not likely. This concludes that the specific expansion of TCR Valpha is not due to contacts between MHC and TCR, instead we suggest that SEH directly interacts with the TCR Valpha domain.  相似文献   

5.
Staphylococcal enterotoxin microbial superantigens   总被引:21,自引:0,他引:21  
Staphylococcal enterotoxins are a family of structurally related proteins that are produced by Staphylococcus aureus. In addition to their role in the pathogenicity of food poisoning, these microbial superantigens have profound effects on the immune system, which makes them useful tools for understanding its mechanism of action. These molecules (24-30 kDa) are highly hydrophilic and exhibit low alpha helix and high beta pleated sheet content, suggesting a flexible, accessible structure. Staphylococcal enterotoxins are among the most potent activators of T lymphocytes known. The receptors for staphylococcal enterotoxins on antigen-presenting cells are major histocompatibility complex (MHC) class II molecules. Further, the alpha-helical regions of the class II molecule are essential for function and appear to interact directly with the NH2-terminal region of staphylococcal enterotoxins such as SEA. Recent studies have shown that a complex of staphylococcal enterotoxin and MHC class II molecules is required for binding to the V beta region of the T cell antigen receptor. Staphylococcal enterotoxin mitogenic activity is dependent on induction of interleukin 2, which may be intimately involved in the mechanism of toxicity. The mouse minor lymphocyte stimulating (M1s) "endogenous" self-superantigen has been shown to be a retroviral gene product, so this too is apparently a microbial superantigen. An understanding of the mechanisms of action of these microbial superantigens has implications for normal and pathological immune functions.  相似文献   

6.
7.
Multiple sclerosis (MS) is an autoimmune disease characterized by infiltration of pathogenic immune cells in the CNS resulting in destruction of the myelin sheath and surrounding axons. We and others have previously measured the frequency of human myelin-reactive T cells in peripheral blood. Using T cell cloning techniques, a modest increase in the frequency of myelin-reactive T cells in patients as compared with control subjects was observed. In this study, we investigated whether myelin oligodendrocyte glycoprotein (MOG)-specific T cells could be detected and their frequency was measured using DRB1*0401/MOG(97-109(107E-S)) tetramers in MS subjects and healthy controls expressing HLA class II DRB1*0401. We defined the optimal culture conditions for expansion of MOG-reactive T cells upon MOG peptide stimulation of PMBCs. MOG(97-109)-reactive CD4(+) T cells, isolated with DRB1*0401/MOG(97-109) tetramers, and after a short-term culture of PMBCs with MOG(97-109) peptides, were detected more frequently from patients with MS as compared with healthy controls. T cell clones from single cell cloning of DRB1*0401/MOG(97-109(107E-S)) tetramer(+) cells confirmed that these T cell clones were responsive to both the native and the substituted MOG peptide. These data indicate that autoantigen-specific T cells can be detected and enumerated from the blood of subjects using class II tetramers, and the frequency of MOG(97-109)-reactive T cells is greater in patients with MS as compared with healthy controls.  相似文献   

8.
Goebeler V  Ruhe D  Gerke V  Rescher U 《FEBS letters》2006,580(10):2430-2434
Annexin A8 is a poorly characterized member of the annexin family of Ca2+-regulated membrane binding proteins. Initially only identified at the cDNA level it had been tentatively linked to acute promyelocytic leukaemia (APL) due to its high and regulated expression in APL-derived cells. Here we identify unique properties of the annexin A8 protein. We show that it binds Ca2+-dependently and with high specificity to phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2) and is also capable of interacting with F-actin. In line with these characteristics annexin A8 is recruited to F-actin-associated PtdIns(4,5)P2-rich membrane domains formed in HeLa cells upon infection with non-invading enteropathogenic Escherichia coli. These properties suggest a role of annexin A8 in the organization of certain actin-associated membrane domains.  相似文献   

9.
《MABS-AUSTIN》2013,5(1):119-129
Staphylococcal enterotoxin (SE) B is among the potent toxins produced by Staphylococcus aureus that cause toxic shock syndrome (TSS), which can result in multi-organ failure and death. Currently, neutralizing antibodies have been shown to be effective immunotherapeutic agents against this toxin, but the structural basis of the neutralizing mechanism is still unknown. In this study, we generated a neutralizing monoclonal antibody, 3E2, against SEB, and analyzed the crystal structure of the SEB-3E2 Fab complex. Crystallographic analysis suggested that the neutralizing epitope overlapped with the MHC II molecule binding site on SEB, and thus 3E2 could inhibit SEB function by preventing interaction with the MHC II molecule. Mutagenesis studies were done on SEB, as well as the related Staphylococcus aureus toxins SEA and SEC. These studies revealed that tyrosine (Y)46 and lysine (K)71 residues of SEB are essential to specific antibody–antigen recognition and neutralization. Substitution of Y at SEA glutamine (Q)49, which corresponds to SEB Y46, increased both 3E2’s binding to SEA in vitro and the neutralization of SEA in vivo. These results suggested that SEB Y46 is responsible for distinguishing SEB from SEA. These findings may be helpful for the development of antibody-based therapy for SEB-induced TSS.  相似文献   

10.
Staphylococcal enterotoxin (SE) B is among the potent toxins produced by Staphylococcus aureus that cause toxic shock syndrome (TSS), which can result in multi-organ failure and death. Currently, neutralizing antibodies have been shown to be effective immunotherapeutic agents against this toxin, but the structural basis of the neutralizing mechanism is still unknown. In this study, we generated a neutralizing monoclonal antibody, 3E2, against SEB, and analyzed the crystal structure of the SEB-3E2 Fab complex. Crystallographic analysis suggested that the neutralizing epitope overlapped with the MHC II molecule binding site on SEB, and thus 3E2 could inhibit SEB function by preventing interaction with the MHC II molecule. Mutagenesis studies were done on SEB, as well as the related Staphylococcus aureus toxins SEA and SEC. These studies revealed that tyrosine (Y)46 and lysine (K)71 residues of SEB are essential to specific antibody–antigen recognition and neutralization. Substitution of Y at SEA glutamine (Q)49, which corresponds to SEB Y46, increased both 3E2’s binding to SEA in vitro and the neutralization of SEA in vivo. These results suggested that SEB Y46 is responsible for distinguishing SEB from SEA. These findings may be helpful for the development of antibody-based therapy for SEB-induced TSS.  相似文献   

11.
12.
Ligands binding to Toll-like receptor (TLR), interleukin 1 receptor (IL-1R), or IFN-γR1 are known to trigger MyD88-mediated signaling, which activates pro-inflammatory cytokine responses. Recently we reported that staphylococcal enterotoxins (SEA or SEB), which bind to MHC class II molecules on APCs and cross link T cell receptors, activate MyD88- mediated pro-inflammatory cytokine responses. We also reported that MyD88(-/-) mice were resistant to SE- induced toxic shock and had reduced levels of serum cytokines. In this study, we investigated whether MHC class II- SE interaction by itself is sufficient to activate MyD88 in MHC class II(+) cells and induce downstream pro-inflammatory signaling and production of cytokines such as TNF-α and IL-1β. Here we report that human monocytes treated with SEA, SEB, or anti-MHC class II monoclonal antibodies up regulated MyD88 expression, induced activation of NF-kB, and increased expression of IL-1R1 accessory protein, TNF-α and IL-1β. MyD88 immunoprecipitated from cell extracts after SEB stimulation showed a greater proportion of MyD88 phosphorylation compared to unstimulated cells indicating that MyD88 was a component of intracellular signaling. MyD88 downstream proteins such as IRAK4 and TRAF6 were also up regulated in monocytes after SEB stimulation. In addition to monocytes, primary B cells up regulated MyD88 in response to SEA or SEB stimulation. Importantly, in contrast to primary B cells, MHC class II deficient T2 cells had no change of MyD88 after SEA or SEB stimulation, whereas MHC class II-independent activation of MyD88 was elicited by CpG or LPS. Collectively, these results demonstrate that MHC class II utilizes a MyD88-mediated signaling mechanism when in contact with ligands such as SEs to induce pro-inflammatory cytokines.  相似文献   

13.
14.
15.
A technique for detection of staphylococcal enterotoxin A with sandwich enzyme-linked immunoassay (ELISA) was developed. Mouse monoclonal anti-SEA antibodies were used as capture antibodies and phage displayed anti-SEA scFv were used as detection antibodies. The limit of detection was 6–12.5 ng/mL for different pairs of antibodies. Some conditions of phage-displayed antibodies for storage in dissolved and lyophilized state were examined. It was shown the use of trehalose and arginine preserved the functional activity of phage-displayed antibodies.  相似文献   

16.
The enterotoxins of Staphylococcus aureus (SE) are extremely potent activators of human and mouse T lymphocytes. In general, T cell responses to SE are MHC class II dependent (presumably reflecting the ability of SE to bind directly to MHC class II molecules) and restricted to responding cells expressing certain T cell receptor beta-chain variable (TCR V beta) domains. Recently we demonstrated that CD8+ CTL expressing appropriate TCR V beta could recognize SE presented on MHC class II-bearing target cells. We now show that MHC class II expression is not strictly required for T cell recognition of SE. Both human and mouse MHC class II negative target cells could be recognized (i.e., lysed) in a SE-dependent fashion by CD8+ mouse CTL clones and polyclonal populations, provided that the CTL expressed appropriate TCR V beta elements. SE-dependent lysis of MHC class II negative targets by CTL was inhibited by mAb directed against CD3 or LFA-1, suggesting that SE recognition was TCR and cell contact dependent. Furthermore, different SE were recognized preferentially by CTL on MHC class II+ vs MHC class II- targets. Taken together, our data raise the possibility that SE binding structures distinct from MHC class II molecules may exist.  相似文献   

17.
18.
Bacterial superantigens (SAgs) are potent activators of T lymphocytes and play a pathophysiological role in Gram-positive septic shock and food poisoning. To characterize potential MHC class II binding sites of the bacterial SAg staphylococcal enterotoxin (SE) A, we performed alanine substitution mutagenesis throughout the C-terminus and at selected sites in the N-terminal domain. Four amino acids in the C-terminus were shown to be involved in MHC class II binding. Three of these amino acids, H225, D227 and H187, had a major influence on MHC class II binding and appeared to be involved in coordination of a Zn2+ ion. Alanine substitution of H225 and D227 resulted in a 1000-fold reduction in MHC class II affinity. Mutation at F47, which is equivalent to the F44 previously shown to be central in the MHC class II binding site of the SAg, SEB, resulted in a 10-fold reduction in MHC class II affinity. The combination of these mutations in the N- and C-terminal sites resulted in a profound loss of activity. The perturbation of MHC class II binding in the various mutants was accompanied by a corresponding loss of ability to induce MHC class II-dependent T cell proliferation and cytotoxicity. All of the SEA mutants were expressed as Fab-SEA fusion proteins and found to retain an intact T cell receptor (TCR) epitope, as determined in a mAb targeted MHC class II-independent T cell cytotoxicity assay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The staphylococcal enterotoxins are a family of bacterial toxins that are thought to exert their pathogenic effects by the massive activation of T lymphocytes to produce lymphokines. Activation of T cells by these toxins is dependent on MHC class II+ APC. Recent studies from a number of laboratories have implicated MHC class II proteins as the APC surface receptor for a number of the staphylococcal enterotoxins. The present report shows that staphylococcal enterotoxin A, (SEA) binds to the purified murine MHC class II molecule I-Ed reconstituted in supported planar membranes, indicating that no other cell surface proteins are required for SEA binding. The Kd for SEA binding to I-Ed was determined to be 3.5 +/- 1.6 x 10(-6) M. Specific binding of SEA to I-Ad was also observed, but the interaction was of significantly lower affinity. Binding of SEA to purified I-Ed was blocked by antibodies against both the alpha- and the beta-chain of the I-Ed molecule, but not by antibodies specific for an unrelated MHC class II protein. Binding of SEA to I-Ad was blocked by an A beta d but not by an A alpha d-specific antibody. Planar membranes containing only lipid and purified I-Ed molecules were sufficient for activation of a V beta 1 expressing T hybrid by SEA. The T cells responded to as few as 180 toxin molecules per T cell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号