首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Expression of catabolite sensitive operons is repressed in E. coli mutants devoid of HPr--a component of glucose transport system. The ptsH mutants do not utilize the substrates for phosphoenolpyruvate dependent phosphotransferase system (PTS) except for fructose. Besides that, the mutants are deficient in utilization of many substrates entering the bacteria via the other transport systems. The ptsS mutation mapped in the region of the fructose regulon on the 46th min of the chromosomal map restores the growth of ptsH mutants on all substrates. The accumulation and PEP-dependent phosphorylation of proteins substrates of PTS is also restored. The synthesis of the fructose specific phosphotransferase system becomes constitutive under the effect of ptsS mutation. The mutation is supposed to impair the regulatory region of the fructose regulon.  相似文献   

2.
3.
Properties of the pleiotropic mutation pts17 are described. This mutation is liked to pts1 gene, which specifies the synthesis of the enzyme I of phosphoenolpyruvate-dependent phosphotransferase system (PTS) in Escherichia coli K-12. Genetic analysis has shown that pts17 mutation is located between purC and pts1 markers and that the wild type allele pts17+ has transdominant character over the mutant allele pts17. The mutant strain J6217, isogenic to parent J62, shows normal growth properties in the minimal salt media with a number of carbohydrates used as a single carbon source. The pts17 mutations does not affect the enzyme I activity, but significantly suppresses the total PTS activity in the bacterial cell extracts. The intact mutant cells reveal the enhanced rate of accumulation and phosphorylation of alpha-methylglucoside. The pts17 bacteria show 3-fold enhanced phosphohydrolase activity with glucose-6-phosphate as substrate. It is established that pts17 mutation decreases the differential rate of the L-tryptophanase synthesis and makes the process of unductions resistant to glucose catabolite repression. It is suggested that this mutation affects the activity of the PTS factor III. One can suppose that the latter mediates the influence of ptsI and ptsH mutations upon the expression of catabolite-sensitive operons in E. coli.  相似文献   

4.
Phage Mu-1 cts61 was used for transposition of pts1 and ptsH genes. The received F'-factors AUF2 and AUF3 carry short fragments of the bacterial chromosome. Merodiploid strains with double pts genes were selected in sexduction crosses with the appropriate recA recipients. Effect of the gene dose was not registered in pts+/pts+ strains in the case of accumulation of the substrates of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) and in the case of bacterial growth in the presence of these carbohydrates. This indicates that the enzyme (enzymes) II of the PTS is the limiting step in the transpost process. Induction of beta-galactosidase and the growth on carbohydrates not transported via the PTS (maltose, lactose) were greatly reduced in pts mutant. Introduction of the pts+ allele with episome lead to the restoration of the two above processes. These data show that the phospho approximately HPr generating system of the PTS is directly (or in indirect manner) involved in the regulation of catabolite-sensitive operons. Glucose repression was markedly increased in pts+/pts+ merodiploids as compared with pts+/pts- ones and with pts+ bacteria. Possible mechanisms of this effect are discussed.  相似文献   

5.
6.
In streptococci, HPr, a phosphocarrier of the phosphoenolpyruvate:sugar phosphotransferase transport system (PTS), undergoes multiple posttranslational chemical modifications resulting in the formation of HPr(His approximately P), HPr(Ser-P), and HPr(Ser-P)(His approximately P), whose cellular concentrations vary with growth conditions. Distinct physiological functions are associated with specific forms of HPr. We do not know, however, the cellular thresholds below which these forms become unable to fulfill their functions and to what extent modifications in the cellular concentrations of the different forms of HPr modify cellular physiology. In this study, we present a glimpse of the diversity of Streptococcus salivarius ptsH mutants that can be isolated by positive selection on a solid medium containing 2-deoxyglucose and galactose and identify 13 amino acids that are essential for HPr to properly accomplish its physiological functions. We also report the characterization of two S. salivarius mutants that produced approximately two- and threefoldless HPr and enzyme I (EI) respectively. The data indicated that (i) a reduction in the synthesis of HPr due to a mutation in the Shine-Dalgarno sequence of ptsH reduced ptsI expression; (ii) a threefold reduction in EI and HPr cellular levels did not affect PTS transport capacity; (iii) a twofold reduction in HPr synthesis was sufficient to reduce the rate at which cells metabolized PTS sugars, increase generation times on PTS sugars and to a lesser extent on non-PTS sugars, and impede the exclusion of non-PTS sugars by PTS sugars; (iv) a threefold reduction in HPr synthesis caused a strong derepression of the genes coding for alpha-galactosidase, beta-galactosidase, and galactokinase when the cells were grown at the expense of a PTS sugar but did not affect the synthesis of alpha-galactosidase when cells were grown at the expense of lactose, a noninducing non-PTS sugar; and (v) no correlation was found between the magnitude of enzyme derepression and the cellular levels of HPr(Ser-P).  相似文献   

7.
8.
9.
A promoter-like mutation, ptsP160, has been identified which drastically reduces expression of the genes specifying two proteins, HPr and enzyme I, of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Salmonella typhimurium. This mutation lies between trzA, a gene specifying susceptibility to 1,2,4-triazole, and ptsH, the structural gene for HPr. It leads to a loss of active transport of those sugars that require the PTS for entry into the cell. Pseudorevertants of strains carrying this promoter-like mutation have additional lesions very closely linked to ptsP160 by transduction analysis and are noninducible for HPr and enzyme I above a basal level. Presumably, strains carrying ptsP160 are defective in the normal induction mechanism for HPr and enzyme I, and the pseudorevertants derived from them result from second-site initiation signals within or near this promoter-like element. The induction of HPr and enzyme I above their noninduced levels apparently is not required for transport of at least one PTS sugar, methyl alpha-d-glucopyranoside, since this sugar is taken up by the pseudorevertants at the same rate as by the wild type. The existence of a promoter-like element governing the coordinate inducibility of both HPr and enzyme I suggests that ptsH and ptsI constitute an operon. Wild-type levels of a sugar-specific PTS protein, factor III, are synthesized in response to the crr(+) gene in both a ptsP160 strain and its pseudorevertants; this suggests that the crr(+) gene has its own promoter distinct from ptsP.  相似文献   

10.
In Bacillus subtilis, CcpA-dependent carbon catabolite repression (CCR) mediated at several cis-acting carbon repression elements (cre) requires the seryl-phosphorylated form of both the HPr (ptsH) and Crh (crh) proteins. During growth in minimal medium, the ptsH1 mutation, which prevents seryl phosphorylation of HPr, partially relieves CCR of several genes regulated by CCR. Examination of the CCR of the histidine utilization (hut) enzymes in cells grown in minimal medium showed that neither the ptsH1 nor the crh mutation individually had any affect on hut CCR but that hut CCR was abolished in a ptsH1 crh double mutant. In contrast, the ptsH1 mutation completely relieved hut CCR in cells grown in Luria-Bertani medium. The ptsH1 crh double mutant exhibited several growth defects in glucose minimal medium, including reduced rates of growth and growth inhibition by high levels of glycerol or histidine. CCR is partially relieved in B. subtilis mutants which synthesize low levels of active glutamine synthetase (glnA). In addition, these glnA mutants grow more slowly than wild-type cells in glucose minimal medium. The defects in growth and CCR seen in these mutants are suppressed by mutational inactivation of TnrA, a global nitrogen regulatory protein. The inappropriate expression of TnrA-regulated genes in this class of glnA mutants may deplete intracellular pools of carbon metabolites and thereby result in the reduction of the growth rate and partial relief of CCR.  相似文献   

11.
Corynebacterium glutamicum grows on a variety of carbohydrates and organic acids. Uptake of the preferred carbon source glucose via the phosphoenolpyruvate-dependent phosphotransferase system (PTS) is reduced during coutilization of glucose with acetate, sucrose, or fructose compared to growth on glucose as the sole carbon source. Here we show that the DeoR-type regulator SugR (NCgl1856) represses expression of ptsG, which encodes the glucose-specific PTS enzyme II. Overexpression of sugR resulted in reduced ptsG mRNA levels, decreased glucose utilization, and perturbed growth on media containing glucose. In mutants lacking sugR, expression of the ptsG'-'cat fusion was increased two- to sevenfold during growth on gluconeogenic carbon sources but remained similar during growth on glucose or other sugars. As shown by DNA microarray analysis, SugR also regulates expression of other genes, including ptsS and the putative NCgl1859-fruK-ptsF operon. Purified SugR bound to DNA regions upstream of ptsG, ptsS, and NCgl1859, and a 75-bp ptsG promoter fragment was sufficient for SugR binding. Fructose-6-phosphate interfered with binding of SugR to the ptsG promoter DNA. Thus, while during growth on gluconeogenic carbon sources SugR represses ptsG, ptsG expression is derepressed during growth on glucose or under other conditions characterized by high fructose-6-phosphate concentrations, representing one mechanism which allows C. glutamicum to adapt glucose uptake to carbon source availability.  相似文献   

12.
In gram-positive bacteria, the HPr protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) can be phosphorylated on a histidine residue at position 15 (His(15)) by enzyme I (EI) of the PTS and on a serine residue at position 46 (Ser(46)) by an ATP-dependent protein kinase (His approximately P and Ser-P, respectively). We have isolated from Streptococcus salivarius ATCC 25975, by independent selection from separate cultures, two spontaneous mutants (Ga3.78 and Ga3.14) that possess a missense mutation in ptsH (the gene encoding HPr) replacing the methionine at position 48 by a valine. The mutation did not prevent the phosphorylation of HPr at His(15) by EI nor the phosphorylation at Ser(46) by the ATP-dependent HPr kinase. The levels of HPr(Ser-P) in glucose-grown cells of the parental and mutant Ga3.78 were virtually the same. However, mutant cells growing on glucose produced two- to threefold less HPr(Ser-P)(His approximately P) than the wild-type strain, while the levels of free HPr and HPr(His approximately P) were increased 18- and 3-fold, respectively. The mutants grew as well as the wild-type strain on PTS sugars (glucose, fructose, and mannose) and on the non-PTS sugars lactose and melibiose. However, the growth rate of both mutants on galactose, also a non-PTS sugar, decreased rapidly with time. The M48V substitution had only a minor effect on the repression of alpha-galactosidase, beta-galactosidase, and galactokinase by glucose, but this mutation abolished diauxie by rendering cells unable to prevent the catabolism of a non-PTS sugar (lactose, galactose, and melibiose) when glucose was available. The results suggested that the capacity of the wild-type cells to preferentially metabolize glucose over non-PTS sugars resulted mainly from inhibition of the catabolism of these secondary energy sources via a HPr-dependent mechanism. This mechanism was activated following glucose but not lactose metabolism, and it did not involve HPr(Ser-P) as the only regulatory molecule.  相似文献   

13.
14.
In gram-positive bacteria, HPr, a phosphocarrier protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), is phosphorylated by an ATP-dependent, metabolite-activated protein kinase on seryl residue 46. In a Bacillus subtilis mutant strain in which Ser-46 of HPr was replaced with a nonphosphorylatable alanyl residue (ptsH1 mutation), synthesis of gluconate kinase, glucitol dehydrogenase, mannitol-1-P dehydrogenase and the mannitol-specific PTS permease was completely relieved from repression by glucose, fructose, or mannitol, whereas synthesis of inositol dehydrogenase was partially relieved from catabolite repression and synthesis of alpha-glucosidase and glycerol kinase was still subject to catabolite repression. When the S46A mutation in HPr was reverted to give S46 wild-type HPr, expression of gluconate kinase and glucitol dehydrogenase regained full sensitivity to repression by PTS sugars. These results suggest that phosphorylation of HPr at Ser-46 is directly or indirectly involved in catabolite repression. A strain deleted for the ptsGHI genes was transformed with plasmids expressing either the wild-type ptsH gene or various S46 mutant ptsH genes (S46A or S46D). Expression of the gene encoding S46D HPr, having a structure similar to that of P-ser-HPr according to nuclear magnetic resonance data, caused significant reduction of gluconate kinase activity, whereas expression of the genes encoding wild-type or S46A HPr had no effect on this enzyme activity. When the promoterless lacZ gene was put under the control of the gnt promoter and was subsequently incorporated into the amyE gene on the B. subtilis chromosome, expression of beta-galactosidase was inducible by gluconate and repressed by glucose. However, we observed no repression of beta-galactosidase activity in a strain carrying the ptsH1 mutation. Additionally, we investigated a ccpA mutant strain and observed that all of the enzymes which we found to be relieved from carbon catabolite repression in the ptsH1 mutant strain were also insensitive to catabolite repression in the ccpA mutant. Enzymes that were repressed in the ptsH1 mutant were also repressed in the ccpA mutant.  相似文献   

15.
Transport and phosphorylation of glucose via enzymes II-A/II-B and II-BGlc of the phosphoenolpyruvate:sugar phosphotransferase system are tightly coupled in Salmonella typhimurium. Mutant strains (pts) that lack the phosphorylating proteins of this system, enzyme I and HPr, are unable to transport or to grow on glucose. From ptsHI deletion strains of S. typhimurium, mutants were isolated that regained growth on and transport of glucose. Several lines of evidence suggest that these Glc+ mutants have an altered enzyme II-BGlc as follows. (i) Insertion of a ptsG::Tn10 mutation (resulting in a defective II-BGlc) abolished growth on and transport of glucose in these Glc+ strains. Introduction of a ptsM mutation, on the other hand, which abolishes II-A/II-B activity, had no effect. (ii) Methyl alpha-glucoside transport and phosphorylation (specific for II-BGlc) was lowered or absent in ptsH+,I+ transductants of these Glc+ strains. Transport and phosphorylation of other phosphoenolpyurate:sugar phosphotransferase system sugars were normal. (iii) Membranes isolated from these Glc+ mutants were unable to catalyze transphosphorylation of methyl alpha-glucoside by glucose 6-phosphate, but transphosphorylation of mannose by glucose 6-phosphate was normal. (iv) The mutation was in the ptsG gene or closely linked to it. We conclude that the altered enzyme II-BGlc has acquired the capacity to transport glucose in the absence of phosphoenolpyruvate:sugar phosphotransferase system-mediated phosphorylation. However, the affinity for glucose decreased at least 1,000-fold as compared to the wild-type strain. At the same time the mutated enzyme II-BGlc lost the ability to catalyze the phosphorylation of its substrates via IIIGlc.  相似文献   

16.
H De Reuse  A Roy  A Danchin 《Gene》1985,35(1-2):199-207
The nucleotide sequence of an Escherichia coli DNA segment containing the ptsH gene and the first 162 nucleotides of the ptsI gene encoding, respectively, Hpr and enzyme I of the phosphoenolpyruvate-dependent glycose phosphotransferase system (PTS), was determined. The ptsH promoter was localized using the S1 mapping technique. A nucleotide sequence very similar to the consensus binding site for cAMP receptor protein was found in the -35 region of the ptsH promoter. The ptsH gene is transcribed in the same direction as the ptsI gene and the crr gene (encoding enzyme IIIGlc of the PTS). Analysis of the nucleotide sequence substantiates the notion that the ptsH-ptsI-crr genes constitute a polycistronic operon.  相似文献   

17.
Histidine-containing phosphocarrier protein (HPr) is common to all of the phosphoenolpyruvate:sugar phosphotransferase systems (PTS) in Escherichia coli and Salmonella typhimurium, except the fructose-specific PTS. Strains which lack HPr activity (ptsH) have been characterized in the past, and it has proved difficult to delineate between tight and leaky mutants. In this study four different parameters of ptsH strains were measured: in vitro sugar phosphorylation activity of the mutant HPr; detection of 32P-labeled P-HPr; ability of monoclonal antibodies to bind mutant HPr; and sensitivity of ptsH strains to fosfomycin. Tight ptsH strains could be defined; they were fosfomycin resistant and produced no HPr protein or completely inactive mutant HPr. All leaky ptsH strains were fosfomycin sensitive, usually produced normal amounts of mutant HPr protein, and had low but measurable activity, and HPr was detectable as a phosphoprotein. This indicates that the regulatory functions of the PTS require a very low level of HPr activity (about 1%). The antibodies used to detect mutant HPr in crude extracts were two monoclonal immunoglobulin G antibodies Jel42 and Jel44. Both antibodies, which have different pIs, inhibited PTS sugar phosphorylation assays, but the antibody-HPr complex could still be phosphorylated by enzyme I. Preliminary evidence suggests that the antibodies bind to two different epitopes which are in part located in a beta-sheet structure.  相似文献   

18.
19.
20.
Sugars transported by a bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) require two soluble proteins: HPr, a low-molecular-weight phosphate-carrier protein, and enzyme I. The structural genes coding for HPr (ptsH) and Enzyme I (ptsI) are shown to be cotransducible in Salmonella typhimurium. The gene order of this region of the Salmonella chromosome is cysA-trzA-ptsH-ptsI...(crr). A method for the isolation of trzA-pts deletion is described. One class of pts deletions extends through ptsH and into ptsI; a second class includes both ptsH and ptsI and extends into or through the crr gene. The crr gene either codes for or regulates the synthesis of a third PTS protein (factor III) which is sugar-specific. A hypothesis is presented for a mechanism of deletion formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号