首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A bivalent tethered approach toward YopH inhibitor development is presented that joins aldehydes with mixtures of bis-aminooxy-containing linkers using oxime coupling. The methodology is characterized by its facility and ease of use and its ability to rapidly identify low micromolar affinity inhibitors. The generality of the approach may potentially make it amenable to the development of bivalent inhibitors directed against other phosphatases.  相似文献   

2.
Protein-tyrosine phosphatases (PTPs) are considered important therapeutic targets because of their pivotal role as regulators of signal transduction and thus their implication in several human diseases such as diabetes, cancer, and autoimmunity. In particular, PTP1B has been the focus of many academic and industrial laboratories because it was found to be an important negative regulator of insulin and leptin signaling, and hence a potential therapeutic target in diabetes and obesity. As a result, significant progress has been achieved in the design of highly selective and potent PTP1B inhibitors. In contrast, little attention has been given to other potential drug targets within the PTP family. Guided by x-ray crystallography, molecular modeling, and enzyme kinetic analyses with wild type and mutant PTPs, we describe the development of a general, low molecular weight, non-peptide, non-phosphorus PTP inhibitor into an inhibitor that displays more than 100-fold selectivity for PTPbeta over PTP1B. Of note, our structure-based design principles, which are based on extensive bioinformatics analyses of the PTP family, are general in nature. Therefore, we anticipate that this strategy, here applied to PTPbeta, in principle can be used in the design and development of selective inhibitors of many, if not most PTPs.  相似文献   

3.
The pathogenic bacteria Yersinia are causative agents in human diseases ranging from gastrointestinal syndromes to bubonic plague. There is increasing risk of misuse of infectious agents, such as Yersinia pestis, as weapons of terror as well as instruments of warfare for mass destruction. Because the phosphatase activity of the Yersinia protein tyrosine phosphatase, YopH, is essential for virulence in the Yersinia pathogen, potent and selective YopH inhibitors are expected to serve as novel anti-plague agents. We have identified a specific YopH small molecule inhibitor, p-nitrocatechol sulfate (pNCS), which exhibits a Ki value of 25 microM for YopH and displays a 13-60-fold selectivity in favor of YopH against a panel of mammalian PTPs. To facilitate the understanding of the underlying molecular basis for tight binding and specificity, we have determined the crystal structure of YopH in complex with pNCS at a 2.0-A resolution. The structural data are corroborated by results from kinetic analyses of the interactions of YopH and its site-directed mutants with pNCS. The results show that while the interactions of the sulfuryl moiety and the phenyl ring with the YopH active site contribute to pNCS binding affinity, additional interactions of the hydroxyl and nitro groups in pNCS with Asp-356, Gln-357, Arg-404, and Gln-446 are responsible for the increased potency and selectivity. In particular, we note that residues Arg-404, Glu-290, Asp-356, and a bound water (WAT185) participate in a unique H-bonding network with the hydroxyl group ortho to the sulfuryl moiety, which may be exploited to design more potent and specific YopH inhibitors.  相似文献   

4.
We report the synthesis of a series of monoanionic phosphotyrosyl (pTyr) mimetic-containing tripeptides based on 'Fmoc-Glu(OBn)-Xxx-Leu-amide' (where Xxx = pTyr mimetic) and their N-terminally modified derivatives. The inhibitory potencies of compounds were tested against YopH and human PTP1B enzymes. Several compounds exhibited noteworthy activity against both YopH and PTP1B. Among the N-terminally modified analogues, 5-methylindole derivative 30 was found to be the best moiety to replace base-labile Fmoc group. A mode of binding with YopH is proposed for tripeptides 21, 30, and 31.  相似文献   

5.
Structural analyses of the protein-tyrosine phosphatase 1B (PTP1B) active site and inhibitor complexes have aided in optimization of a peptide inhibitor containing the novel (S)-isothiazolidinone (IZD) phosphonate mimetic. Potency and permeability were simultaneously improved by replacing the polar peptidic backbone of the inhibitor with nonpeptidic moieties. The C-terminal primary amide was replaced with a benzimidazole ring, which hydrogen bonds to the carboxylate of Asp(48), and the N terminus of the peptide was replaced with an aryl sulfonamide, which hydrogen bonds to Asp(48) and the backbone NH of Arg(47) via a water molecule. Although both substituents retain the favorable hydrogen bonding network of the peptide scaffold, their aryl rings interact weakly with the protein. The aryl ring of benzimidazole is partially solvent exposed and only participates in van der Waals interactions with Phe(182) of the flap. The aryl ring of aryl sulfonamide adopts an unexpected conformation and only participates in intramolecular pi-stacking interactions with the benzimidazole ring. These results explain the flat SAR for substitutions on both rings and the reason why unsubstituted moieties were selected as candidates. Finally, substituents ortho to the IZD heterocycle on the aryl ring of the IZD-phenyl moiety bind in a small narrow site adjacent to the primary phosphate binding pocket. The crystal structure of an o-chloro derivative reveals that chlorine interacts extensively with residues in the small site. The structural insights that have led to the discovery of potent benzimidazole aryl sulfonamide o-substituted derivatives are discussed in detail.  相似文献   

6.
The involvement of the strictly conserved Trp354 residue in the catalysis of the Yersinia protein tyrosine phosphatase (PTPase) has been investigated by site-directed mutagenesis and kinetic studies. Crystallographic structural data have revealed that Trp354 interacts with the active site Arg409 and is located at one of the hinge positions of the flexible surface loop (WpD loop) which also harbors the general acid/base (Asp356) essential for catalysis [Schubert, H. L., Fauman, E. B., Stuckey, J. A., Dixon, J. E. & Saper, M. A. (1995) Protein Sci. 4, 1904-1913]. Two mutants were constructed and expressed that contained the Trp354-->Phe and Trp354-->Ala substitutions. The K(m) of the W354F and W354A mutants were not significantly different from that of the wild-type. However, a major decrease in the affinity for oxyanions was observed for the mutants, which is consistent with Trp354 playing a role in aligning Arg409 for oxyanion binding. In addition replacement of Trp354 with Phe or Ala caused a decrease in kcat of 200-fold and 480-fold, respectively, and impaired the ability of the mutant enzymes to stabilize the negative charge in the leaving group at the transition state. In fact, the W354F and W354A mutants exhibited catalytic efficiency and leaving group dependency similar to those observed for the general acid-deficient PTPase D356N. These results indicate that Trp354 is an important residue that keeps the WpD loop in a catalytically competent conformation and positions the general acid/base Asp356 in the correct orientation for proton transfer.  相似文献   

7.
Receptor protein-tyrosine phosphatases (RPTPs) are single membrane spanning proteins belonging to the family of PTPs that, together with the antagonistically acting protein-tyrosine kinases (PTKs), regulate the protein phosphotyrosine levels in cells. Protein-tyrosine phosphorylation is an important post-translational modification that has a major role in cell signaling by affecting protein-protein interactions and enzymatic activities. Increasing evidence indicates that RPTPs, like RPTKs, are regulated by dimerization. For RPTPalpha, we have shown that rotational coupling of the constitutive dimers in the cell membrane determines enzyme activity. Furthermore, oxidative stress, identified as an important second messenger during the past decade, is a regulator of rotational coupling of RPTPalpha dimers. In this review, we discuss the biochemical and cell biological techniques that we use to study the regulation of RPTPs by dimerization. These techniques include (co-) immunoprecipitation, RPTP activity assays, chemical and genetic cross-linking, detection of cell surface proteins by biotinylation, and analysis of RPTPalpha dimers, using conformation-sensitive antibody binding.  相似文献   

8.
Receptor Protein-Tyrosine Phosphatases (RPTPs) belong to the superfamily of protein-tyrosine phosphatases and have the intrinsic ability to transduce signals across the cell membrane. We are beginning to understand the role of RPTPs in development of invertebrates, due to elegant genetic studies. In contrast, relatively little is known about the role of RPTPs in vertebrate development. Signalling by RPTPs has predominantly been studied in mammalian cell systems, which has led to important insights into potential ligands, into regulation of RPTP activity and into potential RPTP substrates. Here, we will introduce the RPTPs, and discuss the function of the LAR-subfamily of RPTPs. In addition, we focus on the function and signalling of the haematopoietic RPTP, CD45. Finally, we will discuss the structure and function of RPTPalpha, the RPTP that is the subject of our studies.  相似文献   

9.
A sensitive, automated, and nonisotopic assay for protein-tyrosine kinases and phosphatases has been developed. The assay uses commercially available antiphosphotyrosine monoclonal antibodies and the recently developed particle concentration immunofluorescence immunoassay technology. The assay is specific for phosphotyrosine residues, can be performed faster, and is at least 100-fold more sensitive than the current standard filter type radioassay. Myelin basic protein and a synthetic peptide corresponding to the autophosphorylation site of p56lck performed equally well in the detection of p56lck kinase activity. Myelin basic protein phosphorylated on tyrosine residues by p56lck was successfully used as substrate in the detection of phosphatase activity and vanadate or molybdate were shown to inhibit the phosphatase activity. The assay is particularly useful for the rapid detection of enzyme activities in column fractions from biochemical procedures steps and also for screening of large numbers of potential inhibitors or activators of protein-tyrosine kinases and phosphatases.  相似文献   

10.
Structure determination of T cell protein-tyrosine phosphatase   总被引:2,自引:0,他引:2  
Protein-tyrosine phosphatase 1B (PTP1B) has recently received much attention as a potential drug target in type 2 diabetes. This has in particular been spurred by the finding that PTP1B knockout mice show increased insulin sensitivity and resistance to diet-induced obesity. Surprisingly, the highly homologous T cell protein-tyrosine phosphatase (TC-PTP) has received much less attention, and no x-ray structure has been provided. We have previously co-crystallized PTP1B with a number of low molecular weight inhibitors that inhibit TC-PTP with similar efficiency. Unexpectedly, we were not able to co-crystallize TC-PTP with the same set of inhibitors. This seems to be due to a multimerization process where residues 130-132, the DDQ loop, from one molecule is inserted into the active site of the neighboring molecule, resulting in a continuous string of interacting TC-PTP molecules. Importantly, despite the high degree of functional and structural similarity between TC-PTP and PTP1B, we have been able to identify areas close to the active site that might be addressed to develop selective inhibitors of each enzyme.  相似文献   

11.
Three-dimensional quantitative structure-activity relationship (QSAR) studies were conducted on two classes of recently explored compounds with known YopH inhibitory activities. Docking studies were employed to position the inhibitors into the YopH active site to determine the probable binding conformation. Good correlations between the predicated binding free energies and the inhibitory activities were found for two subsets of phosphate mimetics: alpha-ketocarboxylic acid and squaric acid (R2=0.70 and 0.68, respectively). The docking results also provided a reliable conformational alignment scheme for 3D-QSAR modeling. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed based on the docking conformations, giving q2 of 0.734 and 0.754 for CoMFA and CoMSIA models, respectively. The 3D-QSAR models were significantly improved after removal of an outlier (q2=0.829 for CoMFA and q2=0.837 for CoMSIA). The predictive ability of the models was validated using a set of compounds that were not included in the training set. Mapping the 3D-QSAR models to the active site of YopH provides new insight into the protein-inhibitor interactions for this enzyme. These results should be applicable to the prediction of the activities of new YopH inhibitors, as well as providing structural implications for designing potent and selective YopH inhibitors as antiplague agents.  相似文献   

12.
In order to evaluate various mechanistic proposals that have been made regarding the mechanism of the first step of the reaction catalyzed by protein-tyrosine phosphatases, new experimental data have been obtained, and some existing data have been carefully reevaluated. New kinetic isotope effect data for the uncatalyzed hydrolysis of p-nitrophenyl phosphate allow a better evaluation of previously reported data from enzymatic reactions with this substrate. The interpretation, and misinterpretation, of pH rate studies is considered. The pathway of this reaction has been modeled computationally and is found to be generally consistent with experimental studies, except for the extent of proton transfer to the leaving group.  相似文献   

13.
Receptor protein-tyrosine phosphatase (RPTP) alpha belongs to the large family of receptor protein-tyrosine phosphatases containing two tandem phosphatase domains. Most of the catalytic activity is retained in the first, membrane-proximal domain (RPTPalpha-D1), and little is known about the function of the second, membrane-distal domain (RPTPalpha-D2). We investigated whether proteins bound to RPTPalpha using the two-hybrid system and found that the second domain of RPTPsigma interacted with the juxtamembrane domain of RPTPalpha. We confirmed this interaction by co-immunoprecipitation experiments. Furthermore, RPTPalpha not only interacted with RPTPsigma-D2 but also with RPTPalpha-D2, LAR-D2, RPTPdelta-D2, and RPTPmu-D2, members of various RPTP subfamilies, although with different affinities. In the yeast two-hybrid system and in glutathione S-transferase pull-down assays, we show that the RPTP-D2s interacted directly with the wedge structure of RPTPalpha-D1 that has been demonstrated to be involved in inactivation of the RPTPalpha-D1/RPTPalpha-D1 homodimer. The interaction was specific because the equivalent wedge structure in LAR was unable to interact with RPTPalpha-D2 or LAR-D2. In vivo, we show that other interaction sites exist as well, including the C terminus of RPTPalpha-D2. The observation that RPTPalpha, but not LAR, bound to multiple RPTP-D2s with varying affinities suggests a specific mechanism of cross-talk between RPTPs that may regulate their biological function.  相似文献   

14.
The 26S proteasome and calpain are linked to a number of important human diseases. Here, we report a series of analogues of the prototypical tripeptide aldehyde inhibitor MG132 that show a unique combination of high activity and selectivity for calpains over proteasome. Tripeptide aldehydes (1–3) with an aromatic P3 substituent show enhanced activity and selectivity against ovine calpain 2 relative to chymotrypsin-like activity of proteasome. Docking studies reveal the key contacts between inhibitors and calpain to confirm the importance of the S3 pocket with respect to selectivity between calpains 1 and 2 and the proteasome.  相似文献   

15.
Here, we report the identification and characterization of five ortho-quinone inhibitors of PTPalpha. We observed that the potency of these compounds in biochemical assays was markedly enhanced by the presence of DTT. A kinetic analysis suggested that they were functioning as irreversible inhibitors and that the inhibition was targeted to the catalytic site of PTPalpha. The inhibition observed by these compounds was sensitive to superoxide dismutase and catalase, suggesting that reactive oxygen species may be mediators of their inhibition. We observed that in the presence of DTT, these compounds would produce up to 2.5mM hydrogen peroxide (H(2)O(2)). The levels of H(2)O(2) produced were sufficient to completely inactivate PTPalpha. In contrast, without a reducing agent the compounds did not generate H(2)O(2) and showed little activity towards PTPalpha. In addition, these compounds inhibited PTPalpha-dependent cell spreading in NIH 3T3 cells at concentrations that were similar to their activity in biochemical assays. The biological implications of these results are discussed as they support growing evidence that H(2)O(2) is a key regulator of PTPs.  相似文献   

16.
SHP-1 is a cytosolic protein-tyrosine phosphatase that behaves as a negative regulator in eukaryotic cellular signaling pathways. To understand its regulatory mechanism, we have determined the crystal structure of the C-terminal truncated human SHP-1 in the inactive conformation at 2.8-A resolution and refined the structure to a crystallographic R-factor of 24.0%. The three-dimensional structure shows that the ligand-free SHP-1 has an auto-inhibited conformation. Its N-SH2 domain blocks the catalytic domain and keeps the enzyme in the inactive conformation, which supports that the phosphatase activity of SHP-1 is primarily regulated by the N-SH2 domain. In addition, the C-SH2 domain of SHP-1 has a different orientation from and is more flexible than that of SHP-2, which enables us to propose an enzymatic activation mechanism in which the C-SH2 domains of SHPs could be involved in searching for phosphotyrosine activators.  相似文献   

17.
PTP-1B represents an attractive target for the treatment of type 2 diabetes and obesity. Given the role that protein phosphatases play in the regulation of many biologically relevant processes, inhibitors against PTP-1B must be not only potent, but also selective. It has been extremely difficult to synthesize inhibitors that are selective over the highly homologous TCPTP. We have successfully exploited the conservative Leu119 to Val substitution between the two enzymes to synthesize a PTP-1B inhibitor that is an order of magnitude more selective over TCPTP. Structural analyses of PTP-1B/inhibitor complexes show a conformation-assisted inhibition mechanism as the basis for selectivity. Such an inhibitory mechanism may be applicable to other homologous enzymes.  相似文献   

18.
Stimulation of mature T cells activates a downstream signaling cascade involving temporally and spatially regulated phosphorylation and dephosphorylation events mediated by protein-tyrosine kinases and phosphatases, respectively. PTPN22 (Lyp), a non-receptor protein-tyrosine phosphatase, is expressed exclusively in cells of hematopoietic origin, notably in T cells where it represses signaling through the T cell receptor. We used substrate trapping coupled with mass spectrometry-based peptide identification in an unbiased approach to identify physiological substrates of PTPN22. Several potential substrates were identified in lysates from pervanadate-stimulated Jurkat cells using PTPN22-D195A/C227S, an optimized substrate trap mutant of PTPN22. These included three novel PTPN22 substrates (Vav, CD3epsilon, and valosin containing protein) and two known substrates of PEP, the mouse homolog of PTPN22 (Lck and Zap70). T cell antigen receptor (TCR) zeta was also identified as a potential substrate in Jurkat lysates by direct immunoblotting. In vitro experiments with purified recombinant proteins demonstrated that PTPN22-D195A/C227S interacted directly with activated Lck, Zap70, and TCRzeta, confirming the initial substrate trap results. Native PTPN22 dephosphorylated Lck and Zap70 at their activating tyrosine residues Tyr-394 and Tyr-493, respectively, but not at the regulatory tyrosines Tyr-505 (Lck) or Tyr-319 (Zap70). Native PTPN22 also dephosphorylated TCRzeta in vitro and in cells, and its substrate trap variant co-immunoprecipitated with TCRzeta when both were coexpressed in 293T cells, establishing TCRzeta as a direct substrate of PTPN22.  相似文献   

19.
The extracellular signal-regulated protein kinase 2 (ERK2) plays a central role in cellular proliferation and differentiation. Full activation of ERK2 requires dual phosphorylation of Thr183 and Tyr185 in the activation loop. Tyr185 dephosphorylation by the hematopoietic protein-tyrosine phosphatase (HePTP) represents an important mechanism for down-regulating ERK2 activity. The bisphosphorylated ERK2 is a highly efficient substrate for HePTP with a kcat/Km of 2.6 x 10(6) m(-1) s(-1). In contrast, the kcat/Km values for the HePTP-catalyzed hydrolysis of Tyr(P) peptides are 3 orders of magnitude lower. To gain insight into the molecular basis for HePTP substrate specificity, we analyzed the effects of altering structural features unique to HePTP on the HePTP-catalyzed hydrolysis of p-nitrophenyl phosphate, Tyr(P) peptides, and its physiological substrate ERK2. Our results suggest that substrate specificity is conferred upon HePTP by both negative and positive selections. To avoid nonspecific tyrosine dephosphorylation, HePTP employs Thr106 in the substrate recognition loop as a key negative determinant to restrain its protein-tyrosine phosphatase activity. The extremely high efficiency and fidelity of ERK2 dephosphorylation by HePTP is achieved by a bipartite protein-protein interaction mechanism, in which docking interactions between the kinase interaction motif in HePTP and the common docking site in ERK2 promote the HePTP-catalyzed ERK2 dephosphorylation (approximately 20-fold increase in kcat/Km) by increasing the local substrate concentration, and second site interactions between the HePTP catalytic site and the ERK2 substrate-binding region enhance catalysis (approximately 20-fold increase in kcat/Km) by organizing the catalytic residues with respect to Tyr(P)185 for optimal phosphoryl transfer.  相似文献   

20.
The presence of two protein-tyrosine phosphatase (PTP) domains is a striking feature in most transmembrane receptor PTPs (RPTPs). The function of the generally inactive membrane-distal PTP domain (RPTP-D2) is unknown. Here we report that an intramolecular interaction between the spacer region (Sp) and the C-terminus in RPTPalpha prohibited intermolecular interactions. Interestingly, stress factors such as H(2)O(2), UV and heat shock induced reversible, free radical-dependent, intermolecular interactions between RPTPalpha and RPTPalpha-SpD2, suggesting an inducible switch in conformation and binding. The catalytic site cysteine of RPTPalpha-SpD2, Cys723, was required for the H(2)O(2) effect on RPTPalpha. H(2)O(2) induced a rapid, reversible, Cys723-dependent conformational change in vivo, as detected by fluorescence resonance energy transfer, with cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) flanking RPTPalpha-SpD2 in a single chimeric protein. Importantly, H(2)O(2) treatment stabilized RPTPalpha dimers, resulting in inactivation. We propose a model in which oxidative stress induces a conformational change in RPTPalpha-D2, leading to stabilization of RPTPalpha dimers, and thus to inhibition of RPTPalpha activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号