首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
The Salton Sea is the largest inland lake in California. Currently (1997) the salinity of the lake is about 44 g l-1 and is increasing gradually as a result of continued agricultural wastewater inflows, high evaporation rates, and lack of an outlet. A microcosm experiment was carried out to determine the effects of salinity (30, 39, 48, 57, and 65 g l-1) on Salton Sea algae and invertebrates in outdoor aquatic microcosms. The experiment was also designed to assess the effects of tilapia ( Oreochromis mossambicus) on this community at two of these salinities (39 and 57 g l-1). Fiberglass tanks containing Salton Sea water were adjusted to the appropriate salinity by the addition of salts, identically inoculated with organisms from the Salton Sea and other saline water bodies in the region, and monitored for 15 months. Planktonic and nektonic invertebrates were sampled monthly at night from the upper part of the water column. The dominant invertebrates present were Gammarus mucronatus, Artemia franciscana, Trichocorixa reticulata, and an assemblage of ciliate protozoans. Gammarus decreased and Trichocorixa increased with increasing salinity. Artemia was present only at the two highest salinities. Rotifers, harpacticoid and cyclopoid copepods, barnacle larvae, and protozoans all showed marked and varied responses. During the latter half of the experiment, the invertebrate assemblage was dominated by Gammarus at 30 and 39 g l-1, by protozoans at 48 g l-1, and by protozoans and Trichocorixa at 57 and 65 g l-1. The presence of tilapia caused a 99 percent reduction in Gammarus at 39 g l-1 and a 70–90 percent decrease in Trichocorixa at 57 g l-1. These were accompanied by substantial increases in rotifers, copepods, and certain protozoans, and decreases in other protozoans. As the salinity of the Salton Sea continues to increase, large changes in the invertebrate populations are expected. This study suggests that the principal change would be an increase in Trichocorixa densities, the loss of Gammarus, and the appearance of Artemia at about 60–70 g l-1, when both fish and invertebrate predators are likely to be scarce or absent. Protozooplankton abundance is likely to increase when tilapia declines and later decrease when and if large Artemia populations develop. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
A 15 month long experiment was undertaken to document responses of the Salton Sea biota to experimentally manipulated salinity levels (30, 39, 48, 57, and 65 g l-1) in 312-liter fiberglass tanks maintained outdoors. At two salinities (39 and 57 g l-1) microcosms were set up each having one small tilapia ( Oreochromis mossambicus) in order to assess its influence on the system. To 28 tanks filled with Salton Sea water diluted to 30 g l-1, different salts (NaCl, Na2SO_4, MgSO4 · 7H2O, KCl) were added in constant proportions to produce the desired salinity levels. Salton Sea shoreline sediment was added to the bottom of each tank, and inocula of algae and invertebrates were added on several occasions. Invertebrate populations, phytoplankton, periphyton, and water chemistry were monitored at regular intervals. This article present the results concerning water chemistry and nutrient cycling. There was no apparent increase in salinity over time, though ∼ 1190 l of tapwater with a salinity of ∼ 0.65 g l-1 were added to each tank during the experiment. Ionic composition varied both among treatments and over time to some degree. Ca2 concentrations were the same at all salinities, while K1 concentrations were >3 times greater at the highest salinity than at the lowest. pH showed little consistent variation among salinities until the last few months when it was higher by ∼ 0.4 units at the two higher salinities than at the lower ones; it was unaffected by fish. Absolute oxygen concentrations were negatively correlated with salinity, and occasionally depressed by the presence of fish. PO3-4, dissolved organic phosphorus, and particulate phosphorus concentrations were often reduced by 30–80% at 65 g l-1 relative to lower salinities and by the presence of fish. Early in the experiment NO2-3 concentrations were >2 times higher at 57 and 65 g l-1 than at lower salinities, but otherwise effects of salinity on dissolved forms of nitrogen were not marked; particulate nitrogen was much lower at 65 g l-1 than at other salinities and also was reduced by up to 90% by the presence of fish. Silica concentrations increased over time at all salinities, but, relative to those at lower salinities, were reduced by 60–90% at 65 g l-1 by abundant periphytic diatoms. The TN:TP ratio (molar basis) was 24–30 initially and 35–110 at the end of the experiment; it was positively correlated with salinity and the presence of fish. Mechanisms accounting for the above patterns involve principally the biological activities of phytoplankton and periphyton, as modified by grazing by Artemia franciscana and Gammarus mucronatus, and the feeding and metabolic activities of the tilapia. The large reduction in water column TN and TP levels brought about by the fast-growing, phyto- and zooplanktivorous tilapia suggest that amelioration of the Salton Sea's hypereutrophic state might be assisted by a large scale, sustained yield fish harvesting operation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Simpson  E. Paul  Hurlbert  Stuart H. 《Hydrobiologia》1998,381(1-3):179-190
The Salton Sea, the largest lake in California, has a salinity of around 43 g l-1 that is increasing by about 0.4 g l-1 y-1. A 15 month microcosm experiment was conducted to determined the effects of salinity (30, 39, 48, 57, and 65 g l-1) and tilapia ( Oreochromis mossambicus) on an assemblage of benthic and planktonic Salton Sea algae and invertebrates, including the barnacle Balanus amphitrite. Eleven months after the microcosms were established, acrylic plates containing newly settled B. amphitrite collected at the Salton Sea were placed in the microcosms to determine the effects of salinity on their growth and shell strength. The Brody-Bertalanffy growth model was fitted to the B. amphitrite growth data. Growth was fastest at 48 g l-1 and slowest at 65 g l-1. B. amphitrite grown at 39–48 g l-1 were the largest and required the greatest force to break, but the strength of the barnacle shell material declined steadily as the salinity increased. However, B. amphitrite at the higher salinities were shorter and had thicker walls relative to their diameters, which may have increased their structural stability. The effects of salinity on the mortality of adult B. amphitrite was determined in laboratory aquaria set up at 43, 60, 70, 75, 80, 90, and 100 g l-1. Salinities were achieved in two ways: by salt addition and by evaporation. Calculated 12-day LC50 values were 83 g l-1 when salinities were achieved through salt addition and 89 g l-1 when salinities were achieved through evaporation. Differences in B. amphitrite mortality between the two methods illustrate the importance of producing experimental salinity levels carefully. B. amphitrite is expected to become extinct within the Salton Sea when the salinity reaches 70–80 g l-1 and to show marked declines in abundance at salinities as low as 50 g l-1. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The Salton Sea, California's largest inland water body, is an athalassic saline lake with an invertebrate fauna dominated by marine species. The distribution and seasonal dynamics of the benthic macroinvertebrate populations of the Salton Sea were investigated during 1999 in the first survey of the benthos since 1956. Invertebrates were sampled from sediments at depths of 2–12 m, shallow water rocky substrates, and littoral barnacle shell substrates. The macroinvertebrates of the Salton Sea consist of a few invasive, euryhaline species, several of which thrive on different substrates. The principal infaunal organisms are the polychaetes Neanthes succinea Frey & Leuckart and Streblospio benedicti Webster, and the oligochaetes Thalassodrilides gurwitschi Cook, T. belli Hrabe, and an enchytraeid. All but Neanthes are new records for the Sea. Benthic crustacean species are the amphipods Gammarus mucronatus Say, Corophium louisianum Shoemaker, and the barnacle Balanus amphitrite Darwin. Neanthes succinea is the dominant infaunal species on the Sea bottom at depths of 2–12 m. Area-weighted estimates of N. succinea standing stock in September and November 1999 were two orders of magnitude lower than biomass estimated in the same months in 1956. During 1999, population density varied spatially and temporally. Abundance declined greatly in offshore sediments at depths >2 m during spring and summer due to decreasing oxygen levels at the sediment surface, eventually resulting in the absence of Neanthes from all offshore sites >2 m between July and November. In contrast, on shoreline rocky substrate, Neanthes persisted year round, and biomass density increased nearly one order of magnitude between January and November. The rocky shoreline had the highest numbers of invertebrates per unit area, exceeding those reported by other published sources for Neanthes, Gammarus mucronatus, Corophium louisianum, and Balanus amphitrite in marine coastal habitats. The rocky shoreline habitat is highly productive, and is an important refuge during periods of seasonal anoxia for Neanthes and for the other invertebrates that also serve as prey for fish and birds.  相似文献   

5.
We determined the biomass and community structure of macroinvertebrates (>500 µm) associated with macrophytes, sediments, and unvegetated open water in three oligosaline (0.8 to 8.0 mS cm–1) and three mesosaline (8.0 to 30.0 mS cm–1) lakes in the Wyoming High Plains, USA. Total biomass of epiphytic and benthic invertebrates did not change with salinity, but biomass of macroinvertebrate zooplankton in open water was significantly higher in mesosaline lakes. Community composition of invertebrates differed between the two salinity categories: large grazer/detritivores (gastropods and amphipods) were dominant in oligosaline lakes, whereas small planktivores and their insect predators were more prevalent in mesosaline lakes. Both direct physiological effects of salinity, as well as a shift in the form of primary production from macrophytes to phytoplankton, probably explain these changes in community composition. Salinity effects on invertebrate communities appear to be less important to top avian consumers than are costs of osmoregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号