首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CRISPR-Cas9 is a widely used biochemical tool with applications in molecular biology and precision medicine. The RNA-guided Cas9 protein uses its HNH endonuclease domain to cleave the DNA strand complementary to its endogenous guide RNA. In this study, novel constructs of HNH from two divergent organisms, G. stearothermophilus (GeoHNH) and S. pyogenes (SpHNH) were engineered from their respective full-length Cas9 proteins. Despite low sequence similarity, the X-ray crystal structures of these constructs reveal that the core of HNH surrounding the active site is conserved. Structure prediction of the full-length GeoCas9 protein using Phyre2 and AlphaFold2 also showed that the crystallographic construct of GeoHNH represents the structure of the domain within the full-length GeoCas9 protein. However, significant differences are observed in the solution dynamics of structurally conserved regions of GeoHNH and SpHNH, the latter of which was shown to use such molecular motions to propagate the DNA cleavage signal. Indeed, molecular simulations show that the intradomain signaling pathways, which drive SpHNH function, are non-specific and poorly formed in GeoHNH. Taken together, these outcomes suggest mechanistic differences between mesophilic and thermophilic Cas9 species.  相似文献   

2.
The restriction endonuclease (REase) R.KpnI is an orthodox Type IIP enzyme, which binds to DNA in the absence of metal ions and cleaves the DNA sequence 5′-GGTAC^C-3′ in the presence of Mg2+ as shown generating 3′ four base overhangs. Bioinformatics analysis reveals that R.KpnI contains a ββα-Me-finger fold, which is characteristic of many HNH-superfamily endonucleases, including homing endonuclease I-HmuI, structure-specific T4 endonuclease VII, colicin E9, sequence non-specific Serratia nuclease and sequence-specific homing endonuclease I-PpoI. According to our homology model of R.KpnI, D148, H149 and Q175 correspond to the critical D, H and N or H residues of the HNH nucleases. Substitutions of these three conserved residues lead to the loss of the DNA cleavage activity by R.KpnI, confirming their importance. The mutant Q175E fails to bind DNA at the standard conditions, although the DNA binding and cleavage can be rescued at pH 6.0, indicating a role for Q175 in DNA binding and cleavage. Our study provides the first experimental evidence for a Type IIP REase that does not belong to the PD…D/EXK superfamily of nucleases, instead is a member of the HNH superfamily.  相似文献   

3.
4.
Kinetic resonance Raman spectroscopy as a function of pH has been utilized to determine the pK of Schiff base deprotonation during the bacteriorhodopsin photochemical cycle. It is shown that the pK of Schiff base deprotonation is between 9.9 and 10.3, microseconds after light absorption and is >12 before photon initiation of photochemical cycling associated with proton pumping.  相似文献   

5.
Mode of action and base specificity of a nuclease from the silkworm   总被引:1,自引:0,他引:1  
  相似文献   

6.
The UvrABC nuclease complex recognizes a wide spectrum of DNA lesions including pyrimidine dimers, bulky chemical adducts and O6-methylguanine. In this study we have demonstrated that the UvrABC complex is also able to incise PM2 DNA containing the oxidative DNA lesion, thymine glycol. However, DNA containing dihydrothymine, a lesion with a similar structure to thymine glycol, was not incised. The UvrABC complex was also able to incise DNA containing reduced apurinic sites or apurinic sites modified with O-alkyl hydroxylamines, but not DNA containing apurinic sites or urea residues. In vivo, in the absence of base-excision repair, nucleotide excision repair was operable on phi X-174 RF transfecting DNA containing thymine glycols. The level of the repair was found to be directly related to the level of the UvrABC complex. Thus, UvrABC-mediated nucleotide excision repair appears to play a role in the repair of thymine glycol, an oxidative DNA-base lesion that is produced by ionizing radiation or formed during oxidative respiration.  相似文献   

7.
8.
J Ramstein  N Vogt  M Leng 《Biochemistry》1985,24(14):3603-3609
With the tritium-Sephadex method, the hydrogen-exchange kinetics of the five NH protons of guanine and cytosine residues in Z-form poly(dG-dC) X poly (dG-dC) were measured as a function of temperature and catalyst concentration. Over the measured temperature range from 0 to 34 degrees C, two classes of protons with constant amplitudes are found. The three protons of the fast class, which were assigned to the guanine amino and imino protons, have an exchange half-time in the minute time range (at 20 degrees C the half-time is 2.5 min) and an activation energy of 18 kcal mol-1. Since these two types of protons exchange at the same rate in spite of their grossly different pK values, the exchange of these protons must be limited by the same nucleic acid conformational change. The two cytosine amino protons of the slow class are especially slow with exchange half-times in the hour time range (at 20 degrees C the exchange half-time is 1 h) and the activation energy is 20 kcal mol-1. The exchange of these two protons is not limited by some nucleic acid conformational change as shown by the marked exchange acceleration of these protons upon addition of 0.2 M imidazole. In addition, we have also reexamined the hydrogen-deuterium exchange kinetics of the amino protons of guanosine cyclic 2',3'-monophosphate by a spectral difference method using a stopped-flow spectrophotometer. The measured kinetic process is monophasic with a rate constant of 3 s-1 at 20 degrees C, which is in the same range as the predicted rate constant of the guanine amino protons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Huang C  Wei P  Fan K  Liu Y  Lai L 《Biochemistry》2004,43(15):4568-4574
SARS 3C-like proteinase has been proposed to be a key enzyme for drug design against SARS. Lack of a suitable assay has been a major hindrance for enzyme kinetic studies and a large-scale inhibitor screen for SARS 3CL proteinase. Since SARS 3CL proteinase belongs to the cysteine protease family (family C3 in clan CB) with a chymotrypsin fold, it is important to understand the catalytic mechanism of SARS 3CL proteinase to determine whether the proteolysis proceeds through a general base catalysis mechanism like chymotrypsin or an ion pair mechanism like papain. We have established a continuous colorimetric assay for SARS 3CL proteinase and applied it to study the enzyme catalytic mechanism. The proposed catalytic residues His41 and Cys145 were confirmed to be critical for catalysis by mutating to Ala, while the Cys145 to Ser mutation resulted in an active enzyme with a 40-fold lower activity. From the pH dependency of catalytic activity, the pK(a)'s for His41 and Cys145 in the wild-type enzyme were estimated to be 6.38 and 8.34, while the pK(a)'s for His41 and Ser145 in the C145S mutant were estimated to be 6.15 and 9.09, respectively. The C145S mutant has a normal isotope effect in D(2)O for general base catalysis, that is, reacts slower in D(2)O, while the wild-type enzyme shows an inverse isotope effect which may come from the lower activation enthalpy. The pK(a) values measured for the active site residues and the activity of the C145S mutant are consistent with a general base catalysis mechanism and cannot be explained by a thiolate-imidazolium ion pair model.  相似文献   

10.
B Hartmann  M Leng  J Ramstein 《Biochemistry》1986,25(11):3073-3077
The deuteration rates of the poly(dA-dT).poly(dA-dT) amino and imino protons have been measured with stopped-flow spectrophotometry as a function of general and specific base catalyst concentration. Two proton exchange classes are found with time constants differing by a factor of 10 (4 and 0.4 s-1). The slower class represents the exchange of the adenine amino protons whereas the proton of the faster class has been assigned to the thymine imino proton. The exchange rates of these two classes of protons are independent of general and specific base catalyst concentration. This very characteristic behavior demonstrates that in our experimental conditions the exchange rates of the imino and amino protons in poly(dA-dT).poly(dA-dT) are limited by two different conformational fluctuations. We present a three-state exchange mechanism accounting for our experimental results.  相似文献   

11.
Nuclease A (NucA) is a nonspecific endonuclease from Anabaena sp. capable of degrading single- and double-stranded DNA and RNA in the presence of divalent metal ions. We have determined the structure of the delta(2-24),D121A mutant of NucA in the presence of Zn2+ and Mn2+ (PDB code 1ZM8). The mutations were introduced to remove the N-terminal signal peptide and to reduce the activity of the nonspecific nuclease, thereby reducing its toxicity to the Escherichia coli expression system. NucA contains a betabeta alpha metal finger motif and a hydrated Mn2+ ion at the active site. Unexpectedly, NucA was found to contain additional metal binding sites approximately 26 A apart from the catalytic metal binding site. A structural comparison between NucA and the closest analog for which structural data exist, the Serratia nuclease, indicates several interesting differences. First, NucA is a monomer rather than a dimer. Second, there is an unexpected structural homology between the N-terminal segments despite a poorly conserved sequence, which in Serratia includes a cysteine bridge thought to play a regulatory role. In addition, although a sequence alignment had suggested that NucA lacks a proposed catalytic residue corresponding to Arg57 in Serratia, the structure determined here indicates that Arg93 in NucA is positioned to fulfill this role. Based on comparison with DNA-bound nuclease structures of the betabeta alpha metal finger nuclease family and available mutational data on NucA, we propose that His124 acts as a catalytic base, and Arg93 participates in the catalysis possibly through stabilization of the transition state.  相似文献   

12.
We perform an ab initio analysis of the photoisomerization of the protonated Schiff base of retinal (PSB-retinal) from 11-cis to 11-trans rotating the C10-C11=C12-C13 dihedral angle from 0° (cis) to -180° (trans). We find that the retinal molecule shows the lowest rotational barrier (0.22 eV) when its charge state is zero as compared to the barrier for the protonated molecule which is ∼0.89 eV. We conclude that rotation most likely takes place in the excited state of the deprotonated retinal. The addition of a proton creates a much larger barrier implying a switching behavior of retinal that might be useful for several applications in molecular electronics. All conformations of the retinal compound absorb in the green region with small shifts following the dihedral angle rotation; however, the Schiff base of retinal (SB-retinal) at trans-conformation absorbs in the violet region. The rotation of the dihedral angle around the C11=C12 π-bond affects the absorption energy of the retinal and the binding energy of the SB-retinal with the proton at the N-Schiff; the binding energy is slightly lower at the trans-SB-retinal than at other conformations of the retinal.  相似文献   

13.
Galactokinase (GALK), a member the Leloir pathway for normal galactose metabolism, catalyzes the conversion of α-d-galactose to galactose-1-phosphate. For this investigation, we studied the kinetic mechanism and pH profiles of the enzyme from Lactococcus lactis. Our results show that the mechanism for its reaction is sequential in both directions. Mutant proteins D183A and D183N are inactive (<10 000 fold), supporting the role of Asp183 as a catalytic base that deprotonates the C-1 hydroxyl group of galactose. The pH-kcat profile of the forward reaction has a pKa of 6.9 ± 0.2 that likely is due to Asp183. The pH-kcat/KGal profile of the reverse reaction further substantiates this role as it is lacking a key pKa required for a direct proton transfer mechanism. The R36A and R36N mutant proteins show over 100-fold lower activity than that for the wild-type enzyme, thus suggesting that Arg36 lowers the pKa of the C-1 hydroxyl to facilitate deprotonation.  相似文献   

14.
G Váró  J K Lanyi 《Biochemistry》1991,30(20):5008-5015
The photocycles of wild-type bacteriorhodopsin and its D96N form were investigated with a gated multichannel analyzer. Reconstruction of the spectra of the photointermediates from the measured time-resolved difference spectra allowed evaluation of the kinetics; the data at pH 7 in the presence of 100 mM NaCl were best fitted by the scheme K in eqiulibrium L in equilibrium M1----M2 in equilibrium N in equilibrium O----BR plus N----BR [Váró, G., & Lanyi, J. K. (1990) Biochemistry 29, 2241-2250]. The proposed two M states and the M1----M2 reaction were necessitated by anomalies in the kinetics of the decay of K and L. Additional support was provided by a 4-nm blue-shift in the maximum of M in Triton X-100 solubilized bacteriorhodopsin during the photocycle; the kinetics of the shift were consistent with the time course of the proposed M1----M2 transition. In the D96N mutant, the M state is stabilized, and the resulting equilibrium mixture for the intermediates could be evaluated with greater precision. The concentration ratio of L to M at the equilibrium was estimated to be no higher than 0.01. This requires the ratio of forward/reverse rates for the M1 to M2 conversion to be at least 200, i.e., a virtually irreversible reaction. Consistent with an earlier report, the data at lower pH and in the absence of NaCl are different and suggest the existence of a second L species; we propose that it is in equilibrium with M2.  相似文献   

15.
The activity of an ethanolamine and serine base exchange enzyme of rat brain microsomes was copurified to near homogeneity. The purification sequence involved detergent solubilization, Sepharose 4B column chromatography, phenyl-Sepharose 4B column chromatography, glycerol gradient sedimentation, and agarose-polyacrylamide gel electrophoresis under non-denaturing conditions. The ratio of the ethanolamine and serine base exchange activities remained almost constant during purification, and both enzyme activities were enriched 25-fold over the initial microsomal suspension. The final enzyme preparation which contained both enzyme activities showed a single protein band on sodium dodecyl sulfate-polyacrylamide gel, having an apparent molecular mass of about 100 kDa. Serine inhibited the ethanolamine incorporation by this preparation and ethanolamine inhibited the serine incorporation. The competitive nature of this inhibition was apparent from Lineweaver-Burk plots, suggesting that the enzyme catalyzes the incorporation of both ethanolamine and serine into their corresponding phospholipids. The Km and Ki values for ethanolamine were quite similar, being 0.02 and 0.025 mM, respectively. The Km and Ki values for serine were also quite similar being 0.11 and 0.12 mM, respectively. The pH optimum was the same at 7.0 with both substrates. The optimum Ca2+ concentration was 8 mM for serine incorporation.  相似文献   

16.
A new Schiff base copper(II) complex, Cu(o-VANAHE)(2) (o-VANAHE = 2-(o-vanillinamino)-1-hydroxyethane), has been synthesized and characterized. Single crystal X-ray diffraction results suggest that this complex structure belongs to triclinic crystal system, space group P1 with the following crystallographic parameters: a = 8.819(4) angstroms, b = 10.794(5) angstroms, c = 11.350(5) angstroms, alpha = 70.262(6) degrees, beta = 70.816(6) degrees, gamma = 78.360(6) degrees, V = 955.4(7) angstroms3, Z = 2, D(c) = 1.571 Mg x m(-3), and the final R1 = 0.0393, wR2 = 0.0994 for the observed reflections 2620(I > 2sigma(I)). The molecular geometry is almost coplanar. Viscosity, fluorescence spectroscopy and cyclic voltammetry have been conducted to assess their interaction between this complex and DNA. Results showed that the copper(II) complex can increase DNA's relative viscosity and quench the fluorescence intensity of EB bound to DNA. The adding of DNA to the solution of Cu(o-VANAHE)2 causes a slight decrease in the voltammetric current, as well as a slight shift in the E(1/2) to less negative potential. The interaction between the complex and DNA has also been investigated by submarine gel electrophoresis, interestingly, we found that the copper(II) complex can cleave circular plasmid pBR322 DNA to nicked and linear forms.  相似文献   

17.
18.
Summary A single-strand conformational polymorphism found in the DNA of a patient with neurofibromatosis 1 (NF1) was shown to be caused by a deletion of a CCACC or CACCT sequence and an adjacent transversion, located about 500 base pairs downstream from the region that codes for a functional domain of the NF1 gene product. This mutation could also be detected in the patient and in his affected daughter by heteroduplex analysis. The deletion removes the proximal half of a small potential stem-loop and interrupts the reading frame in exon 1. A severely truncated protein with a grossly altered carboxy terminus lacking one third of its sequence is expected to be formed from the mutant allele.  相似文献   

19.
Genome modification by homology‐directed repair (HDR) is an attractive tool for the controlled genetic manipulation of plants. Here, we report the HDR‐mediated gene exchange of expression cassettes in tobacco BY‐2 cells using a designed zinc finger nuclease (ZFN). The target contained a 7‐kb fragment flanked by two ZFN cutting sites. That fragment was replaced with a 4‐kb donor cassette, which integrates gene markers for selection (kanamycin resistance) and for scoring targeting (red fluorescent protein, RFP). Candidates resulting from cassette exchange were identified by molecular analysis of calli generated by transformation via direct DNA delivery. The precision of HDR‐mediated donor integration was evaluated by Southern blot analysis, sequencing of the integration locus and analysis of RFP fluorescence by flow cytometry. Screening of 1326 kanamycin‐resistant calli yielded 18 HDR events, 16 of which had a perfect cassette exchange at the insert junction and 13 of which produced functional RFP. Our results demonstrate that ZFN‐based HDR can be used for high frequency, precise, targeted exchange of fragments of sizes that are commercially relevant in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号