首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Confocal microscopy was used to investigate the temporal and spatial properties of Ca(2+) transients and Ca(2+) sparks in ventricular myocytes of the rainbow trout (Oncorhynchus mykiss). Confocal imaging confirmed the absence of T tubules and the long ( approximately 160 microm), thin ( approximately 8 microm) morphology of trout myocytes. Line scan imaging of Ca(2+) transients evoked by electrical stimulation in cells loaded with fluo 4 revealed spatial inhomogeneities in the temporal properties of Ca(2+) transients across the width of the myocytes. The Ca(2+) wavefront initiated faster, rose faster, and reached larger peak amplitudes in the periphery of the myocyte compared with the center. These differences were exacerbated by stimulation with the L-type Ca(2+) channel agonist (-)BAY K 8644 or by sarcoplasmic reticulum (SR) inhibition with ryanodine and thapsigargin. Results reveal that the shape of the trout myocyte allows for rapid diffusion of Ca(2+) from the cell periphery to the cell center, with SR Ca(2+) release contributing to the cytosolic Ca(2+) rise in a time-dependent manner. Spontaneous Ca(2+) sparks were exceedingly rare in trout myocytes under control conditions (1 sparking cell from 238 cells examined). This is in marked contrast to the rat where a total of 56 spontaneous Ca(2+) sparks were observed in 9 of 11 myocytes examined. Ca(2+) sparklike events were observed in a very small number of trout myocytes (15 sparks from 9 of 378 cells examined) after stimulation with either (-)BAY K 8644 or high Ca(2+) (6 mM). Reducing temperature to 15 degrees C in intact myocytes or permeabilizing myocytes to adjust intracellular conditions to favor Ca(2+) spark detection was without significant effects. Possible reasons for the rarity of Ca(2+) sparks in a cardiac myocyte with an active SR are discussed.  相似文献   

2.
Transgenic (TG) TNF1.6 mice, which cardiac specifically overexpress tumor necrosis factor-alpha (TNF-alpha), exhibit heart failure (HF) and increased mortality, which is markedly higher in young (<20 wk) males (TG-M) than females (TG-F). HF in this model may be partly caused by remodeling of the extracellular matrix and/or structure/function alterations at the single myocyte level. We studied left ventricular (LV) structure and function using echocardiography and LV myocyte morphometry, contractile function, and intracellular Ca(2+) (Ca(i)(2+)) handling using cell edge detection and fura 2 fluorescence, respectively, in 12-wk-old TG-M and TG-F mice and their wild-type (WT) littermates. TG-F mice showed LV hypertrophy without dilatation and only a small reduction of basal fractional shortening (FS) and response to isoproterenol (Iso). TG-M mice showed a large LV dilatation, higher mRNA levels of beta-myosin heavy chain and atrial natriuretic factor versus TG-F mice, reduced FS relative to both WT and TG-F mice, and minimal response to Iso. TG-F and TG-M myocytes were similarly elongated (by approximately 20%). The amplitude of Ca(i)(2+) transients and contractions and the response to Iso were comparable in WT and TG-F myocytes, whereas the time to 50% decline (TD(50%)) of the Ca(i)(2+) transient, an index of the rate of sarcoplasmic reticulum Ca(2+) uptake, was prolonged in TG-F myocytes. In TG-M myocytes, the amplitudes of Ca(i)(2+) transients and contractions were reduced, TD(50%) of the Ca(i)(2+) transient was prolonged, and the inotropic effect of Iso on Ca(i)(2+) transients was reduced approximately twofold versus WT myocytes. Protein expression of sarco(endo)plasmic reticulum Ca(2+)-ATPase 2 and phospholamban was unaltered in TG versus WT hearts, suggesting functional origins of impaired Ca(2+) handling in the former. These results indicate that cardiac-specific overexpression of TNF-alpha induces myocyte hypertrophy and gender-dependent alterations in Ca(i)(2+) handling and contractile function, which may at least partly account for changes in LV geometry and in vivo cardiac function in this model.  相似文献   

3.
MCI-154对大鼠心肌细胞的变力作用   总被引:1,自引:1,他引:0  
Chen HZ  Cui XL  Zhao HC  Zhao LY  Lu JY  Wu BW 《生理学报》2004,56(3):301-305
钙增敏剂具有正性肌力作用,同时不增加细胞内钙浓度,因此可避免导致心律失常和最终心肌细胞死亡的钙超载。然而大部分钙增敏剂对心肌舒张功能有损害作用。MCI-154是一种钙增敏剂,但不损害舒张功能。为阐明其变力作用机制,我们应用离子成像技术研究了MCI-154对分离的单个大鼠心室肌细胞钙瞬变和收缩的影响,利用膜片钳技术观察了MCI-154对大鼠心室肌细胞L-型钙电流和Na^ /Ca^2 交换电流的影响。结果表明:(1)MCI-154在1μmol/L至100μmol/L的浓度范围内对L-型钙电流(ICa-L)无直接影响:(2)MCI-154在轻微增加钙瞬变幅度和缩短心肌钙瞬变TR50和TR90的情况下,呈剂量依赖性地增加大鼠心室肌细胞的缩短;(3)MCI-154剂量依赖性地增加正常大鼠心室肌细胞的Na^ /Ca^2 交换电流。这些结果提示:MCI-154不仅剂量依赖性地发挥了正性变力作用,对舒张功能也没有损害作用,明显不同于其它钙增敏剂,而且还轻微改善了大鼠心室肌细胞的舒张。其对内向Na^ /Ca^2 交换电流的激动作用会加快钙内流,导致TR50和TR90的缩短,提示MCI-154是通过正向Na^ /Ca^2 交换改善舒张功能的。  相似文献   

4.
We tested the hypothesis that the negative functional effects of cyclic GMP on cardiac myocytes were mediated through phospholamban (PLB) and activation of sarcoplasmic reticulum Ca(2+)-ATPase. Using ventricular myocytes from wild type (WT, n=10) and PLB knockout (PLB-KO, n=10) mouse hearts, functional changes were measured using a video edge detector at baseline and after 10(-6), 10(-5)M 8-bromo-cyclic GMP (cGMP), 10(-8), 10(-7)M C-type natriuretic peptide (CNP), or 10(-6), 10(-5)M S-nitroso-N-acetyl-penicillamine (SNAP, nitric oxide donor). Changes in cytosolic Ca(2+) concentration were assessed in fura 2-loaded WT and PLB-KO myocytes. Cyclic GMP dependent phosphorylation analysis was also performed in WT and PLB-KO myocytes. 8-bromo-cGMP 10(-5)M caused a significant decrease in %shortening (3.6+/-0.2% to 2.3+/-0.1%) in WT, but little change in PLB-KO myocytes (3.4+/-0.1% to 3.2+/-0.2%). Similarly, CNP and SNAP reduced %shortening of WT, but not PLB-KO myocyte. Changes in other contractile parameters such as maximum rate of shortening and relaxation were consistent with the changes in % shortening. Intracellular Ca(2+) transients changed similarly to cell contractility in WT and PLB-KO myocytes treated with cGMP and CNP; i.e. Ca(2+) transients decreased with cGMP or CNP in WT myocytes, but were unchanged in PLB-KO myocytes. cGMP dependent phosphorylation analysis showed that some proteins were phosphorylated by cGMP to a lesser extent in PLB-KO compared with WT myocytes, suggesting impaired cGMP-kinase function in PLB-KO cardiac myocytes. These results indicated that cGMP-induced reductions in cardiac myocyte function were at least partially mediated through the action of phospholamban.  相似文献   

5.
The significance of 6-8 wk of high-intensity sprint training (HIST) on contractile abnormalities of myocytes isolated from rat hearts with prior myocardial infarction (MI) was investigated. Compared with the sedentary (Sed) condition, HIST attenuated myocyte hypertrophy observed post-MI primarily by reducing cell lengths but not cell widths. At high extracellular Ca(2+) concentration (5 mM) and low pacing frequency (0.1 Hz), conditions that preferentially favored Ca(2+) influx over efflux, MI-Sed myocytes shortened less than Sham-Sed myocytes did. HIST significantly improved contraction amplitudes in MI myocytes. Under conditions that favored Ca(2+) efflux, i.e., low extracellular Ca(2+) concentration (0.6 mM) and high pacing frequency (2 Hz), MI-Sed myocytes contracted more than Sham-Sed myocytes. HIST did not appreciably affect contraction amplitudes of MI myocytes under these conditions. Compared with MI-Sed myocytes, HIST myocytes showed significant improvement in time required to reach one-half maximal contraction amplitude shortening, maximal myocyte shortening and relengthening velocities, and half time of relaxation. Our results indicate that HIST instituted shortly after MI improved cellular contraction in surviving myocytes. Because our previous studies demonstrated that, in post-MI myocytes, HIST improved intracellular Ca(2+) dynamics, enhanced sarcoplasmic reticulum Ca(2+) uptake and Ca(2+) content, and restored Na(+)/Ca(2+) exchange current toward normal, we hypothesized that improvement in MI myocyte contractile function by HIST was likely mediated by normalization of cellular Ca(2+) homeostatic mechanisms.  相似文献   

6.
Anion channels are extensively expressed in the heart, but their roles in cardiac excitation-contraction coupling (ECC) are poorly understood. We, therefore, investigated the effects of anion channels on cardiac ventricular ECC. Edge detection, fura 2 fluorescence measurements, and whole cell patch-clamp techniques were used to measure cell shortening, the intracellular Ca(2+) transient, and the L-type Ca(2+) current (I(Ca,L)) in single rat ventricular myocytes. The anion channel blockers 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and niflumic acid reversibly inhibited the Ca(2+) transients and cell shortening in a dose-dependent manner. Comparable results were observed when the majority of the extracellular Cl(-) was replaced with the relatively impermeant anions glutamate (Glt(-)) and aspartate (Asp(-)). NPPB and niflumic acid or the Cl(-) substitutes did not affect the resting intracellular Ca(2+) concentration but significantly inhibited I(Ca,L). In contrast, replacement of extracellular Cl(-) with the permeant anions NO, SCN(-), and Br(-) supported the ECC and I(Ca,L), which were still sensitive to blockade by NPPB. Exposure of cardiac ventricular myocytes to a hypotonic bath solution enhanced the amplitude of cell shortening and supported I(Ca,L), whereas hypertonic stress depressed the contraction and I(Ca,L). Moreover, cardiac contraction was completely abolished by NPPB (50 microM) under hypotonic conditions. It is concluded that a swelling-activated anion channel may be involved in the regulation of cardiac ECC through modulating L-type Ca(2+) channel activity.  相似文献   

7.
The effects of 6-8 wk of high-intensity sprint training (HIST) on rat myocyte contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) transients were investigated. Compared with sedentary (Sed) myocytes, HIST induced a modest (5%) but significant (P < 0.0005) increase in cell length with no changes in cell width. In addition, the percentage of myosin heavy chain alpha-isoenzyme increased significantly (P < 0.02) from 0.566 +/- 0.077% in Sed rats to 0.871 +/- 0.006% in HIST rats. At all three (0.6, 1.8, and 5 mM) extracellular Ca(2+) concentrations ([Ca(2+)](o)) examined, maximal shortening amplitudes and maximal shortening velocities were significantly (P < 0.0001) lower and half-times of relaxation were significantly (P < 0.005) longer in HIST myocytes. HIST myocytes had significantly (P < 0.0001) higher diastolic [Ca(2+)](i) levels. Compared with Sed myocytes, systolic [Ca(2+)](i) levels in HIST myocytes were higher at 0.6 mM [Ca(2+)](o), similar at 1.8 mM [Ca(2+)](o), and lower at 5 mM [Ca(2+)](o). The amplitudes of [Ca(2+)](i) transients were significantly (P < 0.0001) lower in HIST myocytes. Half-times of [Ca(2+)](i) transient decline, an estimate of sarcoplasmic reticulum (SR) Ca(2+) uptake activity, were not different between Sed and HIST myocytes. Compared with Sed hearts, Western blots demonstrated a significant (P < 0.03) threefold decrease in Na(+)/Ca(2+) exchanger, but SR Ca(2+)-ATPase and calsequestrin protein levels were unchanged in HIST hearts. We conclude that HIST effected diminished myocyte contractile function and [Ca(2+)](i) transient amplitudes under the conditions studied. We speculate that downregulation of Na(+)/Ca(2+) exchanger may partly account for the decreased contractility in HIST myocytes.  相似文献   

8.
For studying heart pathologies on the cellular level, cultured adult cardiac myocytes represent an important approach. We aimed to explore a novel adult rat ventricular myocyte culture system with minimised dedifferentiation allowing extended experimental manipulation of the cells such as expression of exogenous proteins. Various culture conditions were investigated including medium supplement, substrate coating and electrical pacing for one week. Adult myocytes were probed for (i) viability, (ii) morphology, (iii) frequency dependence of contractions, (iv) Ca(2+) transients, and (v) their tolerance towards adenovirus-mediated expression of the Ca(2+) sensor "inverse pericam". Conventionally, in either serum supplemented or serum-free medium, myocytes dedifferentiated into flat cells within 3 days or cell physiology and morphology were impaired, respectively. In contrast, myocytes cultured in medium supplemented with an insulin-transferrin-selenite mixture on substrates coated with extracellular matrix proteins showed an increased cell attachment and a conserved cross-striation. Moreover, these myocytes displayed optimised preservation of their contractile behaviour and Ca(2+) signalling even under conditions of continuous electrical pacing. Sustained expression of inverse pericam did not alter myocyte function and allowed long lasting high speed Ca(2+) imaging of electrically driven adult myocytes. Our single-cell model thus provides a new advance for high-content screening of these highly specialised cells.  相似文献   

9.
There has been a spectacular rise in the global prevalence of type 2 diabetes mellitus and cardiovascular complications are the major cause of morbidity and mortality in diabetic patients. The objective of the study was to investigate ventricular myocyte shortening, intracellular Ca(2+) signalling and expression of genes encoding cardiac muscle proteins in the aged Zucker diabetic fatty (ZDF) rat. There was a fourfold elevation in non-fasting blood glucose in ZDF rats (478.43 ± 29.22 mg/dl) compared to controls (108.22 ± 2.52 mg/dl). Amplitude of shortening, time to peak (TPK) and time to half (THALF) relaxation of shortening were unaltered in ZDF myocytes compared to age-matched controls. Amplitude and THALF decay of the Ca(2+) transient were unaltered; however, TPK Ca(2+) transient was prolonged in ZDF myocytes (70.0 ± 3.2 ms) compared to controls (58.4 ± 2.3 ms). Amplitude of the L-type Ca(2+) current was reduced across a wide range of test potentials (-30 to +40 mV) in ZDF myocytes compared to controls. Sarcoplasmic reticulum Ca(2+) content was unaltered in ZDF myocytes compared to controls. Expression of genes encoding cardiac muscle proteins, membrane Ca(2+) channels, and cell membrane ion transport and intracellular Ca(2+) transport proteins were variously altered. Myh6, Tnnt2, Cacna2d3, Slc9a1, and Atp2a2 were downregulated while Myl2, Cacna1g, Cacna1h, and Atp2a1 were upregulated in ZDF ventricle compared to controls. The results of this study have demonstrated that preserved ventricular myocyte shortening is associated with altered mechanisms of Ca(2+) transport and a changing pattern of genes encoding a variety of Ca(2+) signalling and cardiac muscle proteins in aged ZDF rat.  相似文献   

10.
We have investigated the effects of acute acidosis on ventricular myocyte shortening and intracellular Ca2+ in streptozotocin (STZ)-induced diabetic rat. Shortening and intracellular Ca2+ were measured in electrically stimulated myocytes superfused with either normal Tyrode solution pH adjusted to either 7.4 (control solution) or 6.4 (acid solution). Experiments were performed at 35-36 degrees C. At 8-12 weeks after treatment, the rats that received STZ had lower body and heart weights compared to controls, and blood glucose was characteristically increased. Contractile defects in myocytes from diabetic rat were characterized by prolonged time to peak shortening. Superfusion of myocytes from control and diabetic rats with acid solution caused a significant reduction in the amplitude of shortening; however, the magnitude of the response was not altered by STZ treatment. Acid solution also caused significant and quantitatively similar reductions in the amplitude of Ca2+ transients in myocytes from control and diabetic rats. Effects of acute acidosis on amplitude of myocyte contraction and Ca2+ transient were not significantly altered by STZ treatment. Altered myofilament sensitivity to Ca2+ and altered mechanisms of sarcoplasmic reticulum Ca2+ transport might partly underlie the acidosis-evoked reduction in amplitude of shortening in myocytes from control and STZ-induced diabetic rat.  相似文献   

11.
Components of excitation-contraction (EC)-coupling were compared at 37 degrees C and 22 degrees C to determine whether hypothermia altered the gain of EC coupling in guinea pig ventricular myocytes. Ca(2+) concentration (fura-2) and cell shortening (edge detector) were measured simultaneously. Hypothermia increased fractional shortening (8.3 +/- 1.7 vs. 2.6 +/- 0.3% at 37 degrees C), Ca(2+) transients (157 +/- 33 vs. 35 +/- 5 nM at 37 degrees C), and diastolic Ca(2+) (100 +/- 9 vs. 60 +/- 6 nM at 37 degrees C) in field-stimulated myocytes (2 Hz). In experiments with high-resistance microelectrodes, the increase in contractions and Ca(2+) transients was accompanied by a twofold increase in action potential duration (APD). When voltage-clamp steps eliminated changes in APD, cooling still increased contractions and Ca(2+) transients. Hypothermia increased sarcoplasmic reticulum (SR) Ca(2+) stores (83 +/- 17 at 37 degrees C to 212 +/- 50 nM, assessed with caffeine) and increased fractional SR Ca(2+) release twofold. In contrast, peak Ca(2+) current was much smaller at 22 degrees C than at 37 degrees C (1.3 +/- 0.4 and 3.5 +/- 0.7 pA/pF, respectively). In cells dialyzed with sodium-free pipette solutions to inhibit Ca(2+) influx via reverse-mode Na(+)/Ca(2+) exchange, hypothermia still increased contractions, Ca(2+) transients, SR stores, and fractional release but decreased the amplitude of Ca(2+) current. The rate of SR Ca(2+) release per unit Ca(2+) current, a measure of EC-coupling gain, was increased sixfold by hypothermia. This increase in gain occurred regardless of whether cells were dialyzed with sodium-free solutions. Thus an increase in EC-coupling gain contributes importantly to positive inotropic effects of hypothermia in the heart.  相似文献   

12.
Obesity plays a pivotal role in metabolic and cardiovascular diseases. Certain types of obesity may be related to alcohol ingestion, which itself leads to impaired cardiac function. This study analyzed basal and ethanol-induced cardiac contractile response using left-ventricular papillary muscles and myocytes from lean and obese Zucker rats. Contractile properties analyzed include: peak tension development (PTD), peak shortening amplitude (PS), time to PTD/PS (TPT/TPS), time to 90% relaxation/relengthening (RT(90)/TR(90)) and maximal velocities of contraction/shortening and relaxation/relengthening (+/-VT and +/-dL/dt). Intracellular Ca(2+) transients were measured as fura-2 fluorescence intensity (DeltaFFI) changes and fluorescence decay time (FDT). In papillary muscles from obese rats, the baseline TPT and RT(90) were significantly prolonged accompanied with low to normal PTD and +/-VT compared to those in lean rats. Muscles from obese hearts also exhibited reduced responsiveness to postrest potentiation, increase in extracellular Ca(2+) concentration, and norepinephrine. By contrast, in isolated myocytes, obesity reduced PS associated with a significant prolonged TR(90), normal TPS and +/-dL/dt. Intracellular Ca(2+) recording revealed decreased resting Ca(2+) levels and prolonged FDT. Acute ethanol exposure (80-640 mg/dl) caused comparable concentration-dependent inhibitions of PTD/PS and DeltaFFI, associated with reduced +/-VT in both groups. Collectively, these results suggest altered cardiac contractile function and unchanged ethanol-induced depression in obesity.  相似文献   

13.
Desensitization of the beta-adrenergic receptor (beta-AR) response is well documented in hypertrophied hearts. We investigated whether beta-AR desensitization is also present at the cellular level in hypertrophied myocardium, as well as the physiological role of inhibitory G (G(i)) proteins and the L-type Ca(2+) channel in mediating beta-AR desensitization. Left ventricular (LV) myocytes were isolated from hypertrophied hearts of hypertensive Dahl salt-sensitive (DS) rats and nonhypertrophied hearts of normotensive salt-resistant (DR) rats. Cells were paced at a rate of 300 beats/min at 37 degrees C, and myocyte contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) were simultaneously measured. In response to increasing concentrations of isoproterenol, DR myocytes displayed a dose-dependent augmentation of cell shortening and the [Ca(2+)](i) transient amplitude, whereas hypertrophied DS myocytes had a blunted response of both cell shortening and the [Ca(2+)](i) transient amplitude. Interestingly, inhibition of G(i) proteins did not restore beta-AR desensitization in DS myocytes. The responses to increases in extracellular Ca(2+) and an L-type Ca(2+) channel agonist were also similar in both DS and DR myocytes. Isoproterenol-stimulated adenylyl cyclase activity, however, was blunted in hypertrophied myocytes. We concluded that compensated ventricular hypertrophy results in a blunted contractile response to beta-AR stimulation, which is present at the cellular level and independent of alterations in inhibitory G proteins and the L-type Ca(2+) channel.  相似文献   

14.
Previous studies in adult myocytes isolated from rat hearts 3 wk after myocardial infarction (MI) demonstrated abnormal contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) homeostasis and decreased sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2) expression and activity, but sarcoplasmic reticulum Ca(2+) leak was unchanged. In the present study, we investigated whether SERCA2 overexpression in MI myocytes would restore contraction and [Ca(2+)](i) transients to normal. Compared with sham-operated hearts, 3-wk MI hearts exhibited significantly higher left ventricular end-diastolic and end-systolic volumes but lower fractional shortening and ejection fraction, as measured by M-mode echocardiography. Seventy-two hours after adenovirus-mediated gene transfer, SERCA2 overexpression in 3-wk MI myocytes did not affect Na(+)-Ca(2+) exchanger expression but restored the depressed SERCA2 levels toward those measured in sham myocytes. In addition, the reduced sarcoplasmic reticulum Ca(2+) uptake in MI myocytes was improved to normal levels by SERCA2 overexpression. At extracellular Ca(2+) concentration of 5 mM, the subnormal contraction and [Ca(2+)](i) transient amplitudes in MI myocytes (compared with sham myocytes) were restored to normal by SERCA2 overexpression. However, at 0.6 mM extracellular Ca(2+) concentration, the supernormal contraction and [Ca(2+)](i) transient amplitudes in MI myocytes (compared with sham myocytes) were exacerbated by SERCA2 overexpression. We conclude that SERCA2 overexpression was only partially effective in ameliorating contraction and [Ca(2+)](i) transient abnormalities in our rat model of ischemic cardiomyopathy. We suggest that other Ca(2+) transport pathways, e.g., Na(+)-Ca(2+) exchanger, may also play an important role in contractile and [Ca(2+)](i) homeostatic abnormalities in MI myocytes.  相似文献   

15.
Myocardial function is enhanced by endurance exercise training, but the cellular mechanisms underlying this improved function remain unclear. Exercise training increases the sensitivity of rat cardiac myocytes to activation by Ca(2+), and this Ca(2+) sensitivity has been shown to be highly dependent on sarcomere length. We tested the hypothesis that exercise training increases this length dependence in cardiac myocytes. Female Sprague-Dawley rats were divided into sedentary control (C) and exercise-trained (T) groups. The T rats underwent 11 wk of progressive treadmill exercise. Heart weight increased by 14% in T compared with C rats, and plantaris muscle citrate synthase activity showed a 39% increase with training. Steady-state tension was determined in permeabilized myocytes by using solutions of various Ca(2+) concentration (pCa), and tension-pCa curves were generated at two different sarcomere lengths for each myocyte (1.9 and 2.3 microm). We found an increased sarcomere length dependence of both maximal tension and pCa(50) (the Ca(2+) concentration giving 50% of maximal tension) in T compared with C myocytes. The DeltapCa(50) between the long and short sarcomere length was 0.084 +/- 0.023 (mean +/- SD) in myocytes from C hearts compared with 0.132 +/- 0.014 in myocytes from T hearts (n = 50 myocytes per group). The Deltamaximal tension was 5.11 +/- 1.42 kN/m(2) in C myocytes and 9.01 +/- 1.28 in T myocytes. We conclude that exercise training increases the length dependence of maximal and submaximal tension in cardiac myocytes, and this change may underlie, at least in part, training-induced enhancement of myocardial function.  相似文献   

16.
Localized Ca(2+)-release events, Ca(2+)sparks, have been suggested to be the 'elementary building blocks' of the calcium signalling system in all types of muscles. In striated muscles these occur at regular intervals along the fibre corresponding to the sarcomeric structures which do not exist in smooth muscle. We showed previously that in visceral and vascular myocytes Ca(2+)sparks occurred much more frequently at certain sites (frequent discharge sites [FDSs]). In this paper, we have related the position of FDSs to the distribution of the sarcoplasmic reticulum in the same living myocyte. The three-dimensional distribution of the SR in freshly isolated rabbit portal vein myocytes was visualized by means of high-resolution confocal imaging after staining with DiOC(6)and/or BODIPY TR-X ryanodine. Both fluorochromes revealed a similar staining pattern indicating a helical arrangement of well-developed superficial SR which occupied about 6% of the cell volume. Computing the frequency of spontaneous Ca(2+)sparks detected by means of fluo-4 fluorescence revealed that in about 70% of myocytes there was only one major FDS located on a prominent portion of superficial SR network usually within 1-2 microm of the nuclear envelope, although a few sparks occurred at other sites scattered generally in superficial locations throughout the cell. Polarized mitochondria were readily identified by accumulation of tetramethylrhodamine ethyl ester (TMRE). These were closely associated with the SR network in extra-nuclear regions. TMRE staining, however, failed to reveal any mitochondria near the FDS-related SR element. When observed, propagating [Ca(2+)](i)waves and associated myocyte contractions were initiated at FDSs. This study provide first insight into the three-dimensional arrangement of the SR in living smooth muscle cells and relates the peculiarity of the structural organization of the myocyte to the features of Ca(2+)signalling at subcellular level.  相似文献   

17.
Diabetes mellitus is a serious global health problem, and cardiovascular complications are the major cause of morbidity and mortality in diabetic patients. The chronic effects of neonatal alloxan- (ALX) induced diabetes mellitus on ventricular myocyte contraction and intracellular Ca(2+) transport have been investigated. Ventricular myocyte shortening was measured with a video edge detection system and intracellular Ca(2+) was measured in fura-2 loaded cells by fluorescence photometry. Diabetes was induced in 5-day old male Wistar rats by a single intraperitoneal injection of ALX (200 mg/kg body weight). Experiments were performed 12 months after ALX treatment. Fasting blood glucose was elevated and blood glucose at 60, 120 and 180 min after a glucose challenge (2 g/kg body weight, intraperitoneal) was elevated in diabetic rats compared to age-matched controls. Amplitude of shortening was significantly (P < 0.05) reduced in electrically stimulated myocytes from diabetic hearts (5.70 ± 0.24%) compared to controls (6.48 ± 0.28%). Amplitude of electrically evoked Ca(2+) transients was also significantly (P < 0.05) reduced in myocytes from diabetic hearts (0.11 ± 0.01 fura-2 ratio units) compared to controls (0.15 ± 0.01 fura-2 ratio units). Fractional sarcoplasmic reticulum Ca(2+) release was not significantly (P > 0.05) altered in myocytes from diabetic heart (0.70 ± 0.03 fura-2 ratio units) compared to controls (0.72 ± 0.03 fura-2 ratio units). Amplitude of caffeine-stimulated Ca(2+) transients was significantly (P < 0.05) reduced in myocytes from diabetic hearts (0.43 ± 0.02 fura-2 ratio units) compared to controls (0.51 ± 0.03 fura-2 ratio units). Area under the caffeine-evoked Ca(2+) transient was significantly (P < 0.05) reduced in myocytes from diabetic heart (0.77 ± 0.06 Vsec) compared to controls (1.14 ± 0.12 Vsec). Intracellular Ca(2+) refilling rate during electrical stimulation following application of caffeine was significantly (P < 0.05) slower in myocytes from diabetic heart (0.013 ± 0.001 V/sec) compared to controls (0.031 ± 0.007 V/sec). Depressed shortening may be partly attributed to depressed sarcoplasmic reticulum Ca(2+) transport in myocytes from neonatal ALX-induced diabetic rat heart.  相似文献   

18.
The extent to which sex differences in cardiac function may be attributed to the direct myocardial influence of testosterone is unclear. In this study the effects of gonadal testosterone withdrawal (GDX) and replacement (GDX+T) in rats, on cardiomyocyte shortening and intracellular Ca(2+) handling was investigated (0.5 Hz, 25 oC). At all extracellular [Ca(2+)] tested (0.5-2.0 mM), the Ca(2+) transient amplitude was significantly reduced (by approximately 50 %) in myocytes of GDX rats two weeks post-gonadectomy. The time course of Ca(2+) transient decay was significantly prolonged in GDX myocytes (tau, 455+/-80 ms) compared with intact (279+/-23 ms) and GDX+T (277+/-19 ms). Maximum shortening of GDX myocytes was markedly reduced (by more than 60 %) and relaxation significantly delayed (by more than 35 %) compared with intact and GDX+T groups. Thus testosterone replacement completely reversed the cardiomyocyte hypocontractility induced by gonadectomy. These results provide direct evidence for a role of testosterone in regulating functional Ca(2+) handling and contractility in the heart.  相似文献   

19.
The chronic effects of type 2 diabetes mellitus on myofilament sensitivity to Ca(2+) in ventricular myocytes from the Goto-Kakizaki (GK) rat have been investigated. Experiments were performed in ventricular myocytes isolated from 17-month GK rats and age-matched Wistar controls. Myocytes were loaded with fura-2 (an indicator for intracellular Ca(2+) concentration) and the fura-2 ratio (340/380 nm), and shortening were measured simultaneously in electrically stimulated myocytes. Myofilament sensitivity to Ca(2+) was assessed from phase-plane diagrams of fura-2 versus cell length by measuring the gradient of the fura-2-cell length trajectory during late relaxation of the twitch contraction. Non-fasting and fasting blood glucose were elevated in GK rats compared to controls. Fasting blood glucose was 151.5 +/- 15.3 mg/dl (n = 8) in GK rats compared to 72.1 +/- 3.6 mg/dl (n = 9) in controls. At 120 min after intraperitoneal injection of glucose (2 g/kg body weight), blood glucose was 570.8 +/- 36.8 mg/dl in GK rats compared to 148 +/- 8.6 mg/dl in controls. Amplitude of shortening was significantly increased in myocytes from GK rats (6.56 +/- 0.54%, n = 31) compared to controls (5.05 +/- 0.43%, n = 36), and the amplitude of the Ca(2+) transient was decreased in myocytes from GK rats (0.23 +/- 0.02 RU, n = 31) compared to controls (0.30 +/- 0.02 RU, n = 36). The fura-2-cell length trajectory during the late stages of relaxation of the twitch contraction was steeper in myocytes from GK rats (89.2 +/- 16.6 microm/RU, n = 27) compared to controls (31.9 +/- 5.9 microm/RU, n = 35). Increased amplitude of shortening, accompanied by a decrease in amplitude of the Ca(2+) transient, might be explained by an increased myofilament sensitivity to Ca(2+).  相似文献   

20.
Major burn injury results in impairment of left ventricular (LV) contractile function. There is strong evidence to support the involvement of gut-derived factor(s) transported in mesenteric lymph in the development of burn-related contractile dysfunction; i.e., mesenteric lymph duct ligation (LDL) prevents burn-related contractile depression. However, the cellular mechanisms for altered myocardial contractility of postburn hearts are largely unknown, and the cellular basis for the salutary effects of LDL on cardiac function have not been investigated. We examined contractility, Ca(2+) transients, and L-type Ca(2+) currents (I(Ca)) in LV myocytes isolated from four groups of rats: 1) sham burn, 2) sham burn with LDL (sham + LDL), 3) burn ( approximately 40% of total body surface area burn), and 4) burn with LDL (burn + LDL). Myocytes isolated from hearts at 24 h postburn had a depressed contractility ( approximately 20%) at baseline and blunted responsiveness to elevation of bath Ca(2+). Myocyte contractility was comparable in sham + LDL and sham burn hearts. LDL completely prevented burn-related changes in myocyte contractility. Mechanistically, the decrease in contractility in myocytes from postburn hearts occurred with a decrease in the amplitude of Ca(2+) transients ( approximately 20%) without changes in resting Ca(2+) or Ca(2+) content of the sarcoplasmic reticulum. On the other hand, I(Ca) density was decreased ( approximately 30%) in myocytes from postburn hearts, with unaltered voltage-dependent properties. Thus burn-related myocardial contractile dysfunction is linked with depressed myocyte contractility associated with a decrease in I(Ca) density. These findings also provide strong evidence that mesenteric lymph is involved in the onset of burn-related cardiomyocyte dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号