首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The demand for highly purified plasmids in gene therapy and plasmid-based vaccines requires large-scale production of pharmaceutical-grade plasmid. Large-scale purification of plasmid DNA from bacterial cell culture normally includes one or several chromatographic steps. Prechromatographic steps include precipitation with solvents, salts, and polymers combined with enzymatic degradation of nucleic acids. No method alone has so far been able to selectively capture plasmid DNA directly from a clarified alkaline lysate. We present a method for selective precipitation of plasmid DNA from a clarified alkaline lysate using polycation poly(N, N'-dimethyldiallylammonium) chloride (PDMDAAC). The specific interaction between the polycation and the plasmid DNA resulted in the formation of a stoichiometric insoluble complex. Efficient removal of contaminants such as RNA, by far the major contaminant in a clarified lysate, and proteins as well as 20-fold plasmid concentration has been obtained with about 80% recovery. The method utilizes a inexpensive, commercially available polymer and thus provides a capture step suitable for large-scale production.  相似文献   

2.
A new bioprocess using mainly membrane operations to obtain purified plasmid DNA from Escherechia coli ferments was developed. The intermediate recovery and purification of the plasmid DNA in cell lysate was conducted using hollow-fiber tangential filtration and tandem anion-exchange membrane chromatography. The purity of the solutions of plasmid DNA obtained during each process stage was investigated. The results show that more than 97% of RNA in the lysate was removed during the process operations and that the plasmid DNA solution purity increased 28-fold. One of the main characteristics of the developed process is to avoid the use of large quantities of precipitating agents such as salts or alcohols. A better understanding of membrane-based technology for the purification of plasmid DNA from clarified E. coli lysate was developed in this research. The convenience of anion-exchange membranes, configured in ready-to-use devices can further simplify large-scale plasmid purification strategies.  相似文献   

3.
The demand for highly purified plasmids in gene therapy and plasmid-based vaccines requires large-scale production of pharmaceutical-grade plasmid. Plasmid DNA was selectively precipitated from a clarified alkaline lysate using the polycation poly(N,N'-dimethyldiallylammonium) chloride which formed insoluble polyelectrolyte complex (PEC) with the plasmid DNA. Soluble PECs of DNA with polycations have earlier been used for cell transformation, but now the focus has been on insoluble PECs. Both DNA and RNA form stable PECs with synthetic polycations. However, it was possible to find a range of salt concentration where plasmid DNA was quantitatively precipitated whereas RNA remained in solution. The precipitated plasmid DNA was resolubilised at high salt concentration and the polycation was removed by gel-filtration.  相似文献   

4.
A novel downstream bioprocess was developed to obtain purified plasmid DNA (pDNA) from Escherichia coli ferments. The intermediate recovery and purification of the pDNA in cell lysate was conducted using hollow-fiber tangential filtration and frontal anion-exchange membrane and elution hydrophobic chromatographies. The purity of the solutions of pDNA obtained during each process stage was investigated. The results show that the pDNA solution purity increased 30-fold and more than 99% of RNA in the lysate was removed during the process operations. The combination of membrane operations and hydrophobic interaction chromatography resulted in an efficient way to recover pDNA from cell lysates. A better understanding of membrane-based technology for the purification of pDNA from clarified E. coli lysate was developed in this research.  相似文献   

5.
Li H  Bo H  Wang J  Shao H  Huang S 《Cytotechnology》2011,63(1):7-12
To establish a cost-effective purification process for the large-scale production of plasmid DNA for gene therapy and DNA vaccination, a single anion-exchange chromatography (AEC) step was employed to purify supercoiled plasmid DNA (sc pDNA) from other isoforms and Escherichia coli impurities present in a clarified lysate. Two different size and conformation plasmids were used as model targets, and showed similar elution behavior in this chromatographic operation, in which sc pDNA was effectively separated from open circle plasmid DNA (oc pDNA) in a salt gradient. The process delivered high-purity pDNA of homogeneity of 95 ± 1.1% and almost undetectable levels of endotoxins, genomic DNA, RNA and protein, at a yield of 65 ± 8%. Furthermore, the transfection efficiency (29 ± 0.4%) was significantly higher than that (20 ± 0.1%) of a pDNA control. The present study confirms the possibility of using a single AEC step to purify sc pDNA from other isoforms and host contaminants present in a clarified E. coli lysate.  相似文献   

6.
Monolith columns from macroporous polyacrylamide gel were grafted with polycations, poly(N,N-dimethylaminoethyl methacrylate) (polyDMAEMA), (2-(methacryloyloxy)ethyl)-trimethyl ammonium chloride (polyMETA) and partially quaternized polyDMAEMA prepared via treating polyDMAEMA-grafted columns with propylbromide. The polymer grafting degrees varied between 34 and 110%. The polycation-grafted monolithic columns are able to capture plasmid DNA directly from alkaline lysate of Escherichia coli cells. Due to the large pore size in macroporous monoliths the particulate material present in non-clarified feeds did not block the columns. The captured plasmid DNA was eluted with 1M NaCl as particulate-free preparation with significantly reduced content of protein and RNA as compared to the applied lysate.  相似文献   

7.
Effect of shear on plasmid DNA in solution   总被引:2,自引:0,他引:2  
This study was designed to evaluate the effect of shear on the supercoiled circular (SC) form of plasmid DNA. The conditions chosen are representative of those occurring during the processing of plasmid-based genes for gene therapy and DNA vaccination. Controlled shear was generated using a capillary rheometer and a rotating disk shear device. Plasmid DNA was tested in a clarified alkaline lysate solution. This chemical environment is characteristic of the early stages of plasmid purification. Quantitative data is reported on shear degradation of three homologous recombinant plasmids of 13, 20 and 29 kb in size. Shear sensitivity increased dramatically with plasmid molecular weight. Ultrapure plasmid DNA redissolved in 10 mM Tris/HCl, 1 mM EDTA pH 8 (TE buffer) was subjected to shear using the capillary rheometer. The shear sensitivity of the three plasmids was similar to that observed for the same plasmids in the clarified alkaline lysate. Further experiments were carried out using the 20 kb plasmid and the rotating disk shear device. In contrast with the capillary rheometer data, ultrapure DNA redissolved in TE buffer was up to eight times more sensitive to shear compared to plasmid DNA in the clarified alkaline lysate. However, this enhanced sensitivity decreased when the ionic strength of the solution was raised by the addition of NaCl to 150 mM. In addition, shear damage was found to be independent of plasmid DNA concentration in the range from 0.2 7g/ml to 20 7g/ml. The combination of shear and air-liquid interfaces caused extensive degradation of the plasmid DNA. The damage was more evident at low ionic strength and low DNA concentration. These findings show that the tertiary structure of plasmid DNA can be severely affected by shear forces. The extent of damage was found to be critically dependent on plasmid size and the ionic strength of the environment. The interaction of shear with air-liquid interfaces shows the highest potential for damaging SC plasmid DNA during bioprocesses.  相似文献   

8.
A recent study by Palmer, Sun, and Harris (Biotechnol. Prog., 25:189–199, 2009) demonstrated that tangential flow filtration (TFF) can be used to produce HPLC‐grade bovine and human hemoglobin (Hb). In this current study, we assessed the quality of bovine Hb (bHb) purified by introducing a 10 L batch‐mode diafiltration step to the previously mentioned TFF Hb purification process. The bHb was purified from bovine red blood cells (RBCs) by filtering clarified RBC lysate through 50 nm (stage I) and 500 kDa (stage II) hollow fiber (HF) membranes. The filtrate was then passed through a 100 kDa (stage III) HF membrane with or without an additional 10 L diafiltration step to potentially remove additional small molecular weight impurities. Protein assays, SDS‐PAGE, and LC‐MS of the purified bHb (stage III retentate) reveal that addition of a diafiltration step has no effect on bHb purity or yield; however, it does increase the methemoglobin level and oxygen affinity of purified bHb. Therefore, we conclude that no additional benefit is gained from diafiltration at stage III and a three stage TFF process is sufficient to produce HPLC‐grade bHb. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

9.
A chromatographic method for the rapid isolation of preparative amounts of plasmid DNA without the use of cesium chloride centrifugation is described. The protocol uses the alkaline extraction procedure and an exclusion column of Fractogel TSK 75S. From a clear lysate it is possible to obtain plasmid DNA completely free of proteins, RNA, and chromosomal DNA. From partially purified plasmid the procedure allows the separation of the different forms. This technique was successfully applied to different plasmids ranging in size from 2.9 to 17.5 MDa. It is a preparative method yielding easily 500 micrograms of pBR322 from 1 liter of amplified culture. The plasmid is suitable for topoisomerase I, topoisomerase II, and EcoRI assays.  相似文献   

10.
Purification of plasmid DNA by tangential flow filtration   总被引:4,自引:0,他引:4  
A simple, scalable method for purification of plasmid DNA is described. The method includes modification of the classical alkaline-lysis-based plasmid extraction method by extending the solubilization step from less than 30 min to 24 h. The extraction is followed by the novel use of tangential flow filtration (TFF) for purification of the remaining contaminants. The method does not include the use of any organic solvents, RNase, high-speed centrifugation, or column chromatography steps. The method typically yields 15 to 20 mg of plasmid DNA per liter of bacterial culture and results in removal of >99% of RNA and >95% of the protein that remains after the modified alkaline lysis procedure. The procedure has been demonstrated to be effective in the isolation of seven different plasmids. Plasmids isolated using this method had comparable transfection capability relative to plasmid isolated using a classical, cesium chloride gradient-based method.  相似文献   

11.
Centrifugal precipitation chromatography (CPC) is a separation system that mainly employs a moving concentration gradient of precipitating agent along a channel and solutes of interest undergo repetitive precipitation-dissolution, fractionate at different locations, and elute out from the channel according to their solubility in the precipitating agent solution. We report here for the first time the use of a CPC system for fractionation of protein, RNA, and plasmid DNA in clarified lysate produced from bacterial culture. The cationic surfactant cetyltrimethylammonium bromide (CTAB) was initially used as a precipitating agent; however, all biomolecules showed no differential solubility in the moving concentration gradient of this surfactant and, as a result, no separation of protein, RNA, and plasmid DNA occurred. To overcome this problem, inorganic salts such as NaCl and NH(4)Cl were introduced into solution of CTAB. The protein and RNA were found to have higher solubility with the addition of these salts and separated from the plasmid DNA. Decreasing surface charge density of CTAB upon addition of NaCl and NH(4)Cl was believed to lead to lower surfactant complexation, and therefore caused differential solubility and fractionation of these biomolecules. Addition of CaCl(2) did not improve solubility and separation of RNA from plasmid DNA.  相似文献   

12.
Anion exchange monolithic chromatography is increasingly becoming a prominent tool for plasmid DNA purification but no generic protocol is available to purify all types of plasmid DNA. In this work, we established a simple framework and used it to specifically purify a plasmid DNA model from a clarified alkaline-lysed plasmid-containing cell lysate. The framework involved optimising ligand functionalisation temperature (30–80 °C), mobile phase flow rate (0.1–1.8 mL/min), monolith pore size (done by changing the porogen content in the polymerisation reaction by 50–80%), buffer pH (6–10), ionic strength of binding buffer (0.3–0.7 M) and buffer gradient elution slope (1–10% buffer B/min). We concluded that preferential pcDNA3F adsorption and optimum resolution could be achieved within the tested conditions by loading the clarified cell lysate into 400 nm pore size of monolith in 0.7 M NaCl (pH 6) of binding buffer followed by increasing the NaCl concentration to 1.0 M at 3%B/min.  相似文献   

13.
The construction, identification, and use of a recombinant DNA clone containing a growth hormone structural gene sequence is described. A cDNA copy of partially purified pregrowth hormone mRNA from cultured rat pituitary tumor (GC) cells was employed in the construction of a hybrid plasmid, designated pBR322-GH1. The cloned DNA sequence was positively identified by a hybridization-translation procedure which should be applicable to any cloned structural gene sequence. This procedure involved hybridization of cytoplasmic poly(A)-containing RNA from GC cells to the cloned DNA immobilized on nitrocellulose filters, followed by elution of the hybridized RNA and translation in a mRNA-depleted rabbit reticulocyte lysate system. Physical and immunological criteria were employed to show that the translation products were enriched for pregrowth hormone. Hybridization to excess plasmid DNA of [3H]uridine-labeled, size fractionated GC cell cytoplasmic RNA was used to show that all growth hormone-specific RNA sequences are the same size as functional pregrowth hormone mRNA.  相似文献   

14.
A 1700 nucleotide DNA sequence derived from Xenopus vitellogenin mRNA has been cloned in the bacterial plasmid pBR322. The identity of the cloned sequence was verified in two ways. Firstly, the plasmid DNA was shown to hybridise to an RNA of the correct size (6,700 nucleotides). This was shown by in situ hybridisation to electrophoretically separated RNA and also by the formation of "R-loops" with purified vitellogenin mRNA. Then, using a novel procedure in which plasmid DNA covalently bound to diazotised paper is used to select complementary mRNA sequences, the cloned sequence was shown to hybridise to an mRNA which directed the synthesis of vitellogenin when translated in a reticulocyte lysate cell-free system.  相似文献   

15.
Isolation of plasmid DNA from cell lysates by aqueous two-phase systems   总被引:1,自引:0,他引:1  
This work presents a study of the partitioning of a plasmid vector containing the cystic fibrosis gene in polyethylene glycol (PEG)/salt (K2HPO4) aqueous two-phase systems (ATPS). The plasmid was extracted from neutralized alkaline lysates using PEG with molecular weights varying from 200 to 8000. The effects of the lysate mass loaded to the ATPS (20, 40, and 60% w/w) and of the plasmid concentration in the lysate were evaluated. The performance of the process was determined by qualitative and quantitative assays, carefully established to overcome the strong interference of impurities (protein, genomic DNA, RNA), salt, and PEG. Plasmid DNA partitioned to the top phase when PEG molecular weight was lower than 400. The bottom phase was preferred when higher PEG molecular weights were used. Aqueous two-phase systems with PEG 300, 600, and 1000 were chosen for further studies on the basis of plasmid and RNA agarose gel analysis and protein quantitation. The recovery yields were found to be proportional to the plasmid concentration in the lysate. The best yields (>67%) were obtained with PEG 1000. These systems (with 40 and 60% w/w of lysate load) were able to separate the plasmid from proteins and genomic DNA, but copartitioning of RNA with the plasmid was observed. Aqueous two-phase systems with PEG 300 concentrated both plasmid and proteins in the top phase. The best system for plasmid purification used PEG 600 with a 40% (w/w) lysate load. In this system, RNA was found mostly in the interphase, proteins were not detected in the plasmid bottom phase and genomic DNA was reduced 7.5-fold.  相似文献   

16.
Purification of plasmids by triplex affinity interaction.   总被引:4,自引:1,他引:3       下载免费PDF全文
Production of pharmaceutical grade plasmid DNA is an important issue in gene therapy. We developed a method for affinity purification of plasmids by triple helix interaction. This method is based on sequence-specific binding of an oligonucleotide immobilized on a large pore chromatography support to a target sequence on the plasmid. Using design criteria derived from thermodynamic data, we produced a 15mer target sequence which binds strongly to the affinity support under mildly acidic conditions. Plasmid DNA was purified from clarified Escherichia coli lysate by incubation with the affinity beads at pH 5.0 and high NaCl concentration. After extensive washing of the beads, purified plasmid DNA was eluted with alkaline buffer. The purified plasmid showed no RNA or cell DNA contamination in HPLC analysis and total protein concentration was reduced considerably. Due to its mechanical stability and porosity this support can be used in a continuous affinity purification process, which has a high potential for scale up.  相似文献   

17.
The use of high salt solution to precipitate RNA in a pharmaceutical-grade plasmid DNA purification process was investigated. Five antichaotropic salts were tested for their potential to precipitate RNA. Calcium chloride was by far the best precipitant with high RNA removal in a very short incubation time. Calcium chloride precipitation conditions were investigated at two stages of a plasmid purification process using experimental design techniques. The effect of up to five factors on RNA precipitation and plasmid recovery was assessed by statistical modeling. Optimized conditions for calcium chloride precipitation were then introduced to the plasmid purification process resulting in the efficient removal of most impurities (RNA, chromosomal DNA, proteins, and endotoxins).  相似文献   

18.
Single step affinity chromatography was employed for the purification of plasmid DNA (pDNA), thus eliminating several steps compared with current commercial purification methods for pDNA. Significant reduction in pDNA production time and cost was obtained. This chromatographic operation employed a peptide-monolith construct to isolate pDNA from Escherichia coli (E. coli) impurities present in a clarified lysate feedstock. Mild conditions were applied to avoid any degradation of pDNA. The effect of some important parameters on pDNA yield was also evaluated with the aim of optimising the affinity purification of pDNA. The results demonstrate that 81% of pDNA was recovered and contaminating gDNA, RNA and protein were removed below detectable levels.  相似文献   

19.
Plasmid DNA as an active pharmaceutical ingredient (API) is gaining more and more importance. For the production of multigram quantities of this substance robust and scalable processes comprising several purification steps have to be designed. One main challenge is the initial separation of plasmid DNA and RNA in such a purification scheme. In this study we investigated the distribution of plasmid DNA and RNA in reverse micellar two-phase systems which is considered to be the basis for the development of an extractive purification step that can easily be integrated into common processes. For this purpose the distribution of the 4.6kb plasmid pUT649 and Escherichia coli RNA in systems comprising isooctane, ethylhexanol, and the surfactant methyltrioctylammoniumchloride (TOMAC) under the influence of different salts was studied. Anion concentrations at which the partitioning behaviour for nucleic acids inverted (inversion point) were identified. Systems capable of separating RNA from plasmid DNA were further analysed and applied to extract RNA from plasmid DNA out of a preconditioned cleared lysate. The capability of reverse micellar systems for plasmid form separation was also shown by capillary and agarose gel electrophoresis.  相似文献   

20.
A method that gives high recovery of deoxyribonucleic acid (DNA) from crude bacterial lysates using ethidium bromide-cesium chloride density gradient centrifugation is presented. After Pronase digestion and shearing of the lysate, essentially 100% recovery of chromosomal DNA and a reproducible recovery of covalently closed circular (CCC) plasmid DNA is obtained for a specific plasmid in a given strain. This method should be useful for comparing the CCC plasmid/chromosome ratio of various plasmid-host combinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号