首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The predatory behaviour of eight wild adult common kestrels (Falco tinnunculus) was recorded during predatory tests carried out in the wild under controlled conditions. Those birds were offered one laboratory mouse each, which was restrained on a base, thereby simulating natural predation. The predatory sequence was recorded directly, but also video-taped. The sequence was rather homogeneous among the kestrels, with most kestrels starting the attack glide from a perch, then capturing the prey at high speed. The mouse was grabbed directly, upon landing; in one instance, however, it disentangled from the bird’s foot and was captured after a few seconds. The target was usually grabbed at the shoulders or neck, or at the trunk. Soon after capture the kestrel flew to a distant perch, where it usually stroked the prey with one single peck, before starting ingestion, which began about 1 min time after prey grasping. Our results are the first to show the possibility of maintaining standardized conditions to study the predatory behaviour of birds of prey. As they are very similar to those obtained in previous tests carried out in captivity using rehabilitated kestrels, our results also confirm earlier ones showing that the kestrel’s predatory behaviour is rather stereotyped—i.e. performed with limited variation—and that it can be studied reliably even in captivity.  相似文献   

2.
Predator impacts on stream benthic prey   总被引:4,自引:0,他引:4  
David Wooster 《Oecologia》1994,99(1-2):7-15
The impact that predators have on benthic, macroinvertebrate prey density in streams is unclear. While some studies show a strong effect of predators on prey density, others show little or no effect. Two factors appear to influence the detection of predator impact on prey density in streams. First, many field studies have small sample sizes and thus might be unable to detect treatment effects. Second, streams contain two broad classes of predators, invertebrates and vertebrates, which might have different impacts on prey density for a variety of reasons, including availability of refuge for prey and prey emigration responses to the two types of predators. In addition, predatory vertebrates have more complex prey communities than predatory invertebrates; this complexity might reduce the impact that predatory vertebrates have on prey because of indirect effects. I conducted a meta-analysis on the results of field studies that manipulate predator density in enclosures to determine (1) if predators have a significant impact on benthic prey density in streams, (2) if the impacts that predatory invertebrates and vertebrates have differ, and (3) if predatory vertebrates have different impacts on predatory prey versus herbivorous prey. The results of the meta-analysis suggest that on average predators have a significant negative effect on prey density, predatory invertebrates have a significantly stronger impact than predatory vertebrates, and predatory vertebrates do not differ in their impact on predatory versus herbivorous invertebrate prey. Three methodological variables (mesh size of enclosures, size of enclosures, and experimental duration) were examined to determine if cross correlations exist that may explain the differences in impact between predatory invertebrates and vertebrates. No correlation exists between mesh size and predator impact. Over all predators, no correlation exists between experimental duration and predator impact; however, within predatory invertebrates a correlation does exist between these variables. Also, a correlation was found between enclosure size and predator impact. This correlation potentially explains the difference in impact between predatory invertebrates and predatory vertebrates. Results of the meta-analysis suggest two important areas for future research: (1) manipulate both types of predators within the same system, and (2) examine their impacts on the same spatial scale.  相似文献   

3.
Death feigning is considered to be an adaptive antipredator behaviour. Previous studies on Tribolium castaneum have shown that prey which death feign have a fitness advantage over those that do not when using a jumping spider as the predator. Whether these effects are repeatable across species or whether they can be seen in nature is, however, unknown. Therefore, the present study involved two experiments: (a) divergent artificial selection for the duration of death feigning using a related species T. freemani as prey and a predatory bug as predator, demonstrating that previous results are repeatable across both prey and predator species, and (b) comparison of the death‐feigning duration of T. castaneum populations collected from field sites with and without predatory bugs. In the first experiment, T. freemani adults from established selection regimes with longer durations of death feigning had higher survival rates and longer latency to being preyed on when they were placed with predatory bugs than the adults from regimes selected for shorter durations of death feigning. As a result, the adaptive significance of death‐feigning behaviour was demonstrated in another prey–predator system. In the second experiment, wild T. castaneum beetles from populations with predators feigned death longer than wild beetles from predator‐free populations. Combining the results from these two experiments with those from previous studies provided strong evidence that predators drive the evolution of longer death feigning.  相似文献   

4.
Summary Prey-selection behaviour of the phytoseiid mite Typhlodromus pyri Scheuten was analysed with a Markovtype model of feeding-state dynamics and feeding-state dependent searching behaviour (Sabelis 1981, 1986, 1989; Metz and Van Batenburg 1985a, b). All behavioural characteristics of the predator which are independent of the feeding state were represented by one parameter. The remaining feeding-state dependent characteristics were represented by a function of the feeding state, with one parameter. The best parameter values to describe a predator-prey interaction were determined by fitting the model to the predation rates in monocultures. Under the assumption that the parameter values are not dependent on the composition of prey species supply, the diet of the predators in mixed cultures was predicted from parameters estimated in monoculture experiments.Two prey types, apple rust mite (Aculus schlechtendali (Nalepa)) adults and European red spider mite (Panonychus ulmi (Koch)) larvae were studied. A large discrepancy was observed between calculated and experimentally determined predation rates of T. pyri in mixed cultures: the predators actually killed 3–7 times more P. ulmi larvae than was predicted by the model.The large difference between observed and predicted predation rates in mixed cultures cannot be explained by changes in the behaviour of the prey species as a result of being together. Therefore, it seems likely that the prey selection behaviour of the predator was different when prey species were presented together than when presented singly. Apparently the predatory mite T. pyri prefers P. ulmi to S. schlechtendali.  相似文献   

5.
African driver ants are nomadic social mesopredators feeding on a highly diverse array of prey species at different trophic levels. Colonies of certain driver ant species have a biomass which can equal that of medium-sized mammalian carnivores and the ultimate cause of their nomadic life-style is thought to be local prey depletion. The impact of driver ant swarm raids is therefore expected to be strong but the degree to which they reduce prey populations has not been quantified and it is unknown whether these spectacular predators exert significant top-down effects. We examined the combined effect of driver ant (Dorylus molestus) and swarm-attending bird (Alethe poliocephala) predation on the population dynamics of earthworms, which constitute the ants’ main prey type in the montane forest of Mount Kenya. Pre-raid earthworm biomass densities in the soil layer down to a depth of 8 cm varied by a factor of 31. The immediate effect of swarm raids was a reduction in earthworm numbers in this layer, but 8 days later earthworm numbers had recovered to pre-raid levels. When earthworm biomass densities were compared, no significant effect of swarm raids was detected. The estimated proportion of earthworm prey biomass extracted from 0 to 8 cm layer by driver ants and birds together was about 2.2%. Although colony distribution was overdispersed as expected based on knowledge of D. molestus migratory behaviour, predation events were highly localized. Predation frequency was low (once every 62 days on average) and highly variable. These results indicate that earthworm prey is highly abundant but at the same time so difficult to harvest that swarm raids exert only a marginal influence on earthworm populations. Longer-term studies would be required to determine whether earthworm populations are limited by swarm raids. The small impacts of individual raids and rapid recovery of earthworm prey populations likely underlie the low frequency of migrations and short distances travelled by migrating colonies of D. molestus.  相似文献   

6.
We tested the importance of innate wariness, avoidance learning, memory and generalization for the formation of predatory behaviour in naive great tits (Parus major) towards mimetic complex of four aposematic species of true bugs (Insecta: Hemiptera: Heteroptera): Lygaeus equestris, Spilostethus saxatilis, Pyrrhocoris apterus and Graphosoma lineatum. The birds showed almost no innate wariness against the aposematically coloured bugs, although a hidden wariness elicited by defensive chemicals of some of the bug species is not excluded. Naive birds learned to avoid different species at different rates, which resulted in different prey mortalities. The avoidance learning was faster when the defensive chemicals produced an immediate irritating effect (particularly when squirted into distance – Glineatum) than when they caused sickness several minutes after the consumption (P. apterus). The experience of birds from learning to avoid a particular species of bug affected their subsequent behaviour to other species – experience with better‐defended species resulted in longer attack latencies, more cautious attacks, broader generalization and lower prey mortality. The least defended species, Papterus, benefited from the experience of birds with better‐defended species, whereas the birds' experience with Papterus did not reduce mortality risk of the other species comparably. Judging from the inexperienced young birds, the mimetic relationships are likely to be quasi‐Batesian. However, as wild‐caught great tits avoid all the four species to the same extent, the relationships may become more mutualistic (quasi‐Müllerian) in later phases of learning under natural conditions. The relationships among species in the mimetic complex thus seem to depend on the amount of experience of the bird predators.  相似文献   

7.
The effect of water level changes and wading birds' abundance on the foraging behaviour of the blacknecked stork (BNS)Ephippiorhynchus asiaticus was studied from January 1995 to June 1997 in Dudwa National Park, Uttar Pradesh. Our observations indicate that BNS territoriality increased as food levels became depleted, resulting in increased rates of aggression towards intruders. Chasing or aggression was more intense during the early period (February and March) than the late period (April, May and June). Most of (> 50%) the aggressive encounters were observed between 0600 and 1000 h of the day. Seventeen species (including BNS) were observed interacting with BNS, throughout the study period. Most interactions were with the spoonbill,Platalea leucorodia (67.4%), followed by the whitenecked stork,Ciconia episcopus (16.6%). The distance (while foraging) between BNS and other wading birds varied significantly (P < 0001) between years indicating that BNS and other water birds foraged at different water depths and thereby explored the wetlands fully. Spoonbills were chased often; the number varied from 1 to 43 birds. BNS occasionally accepted the presence of other wading birds, including spoonbills and started foraging amidst them. This led to successful foraging of BNS (solitary feeder). Other fish-eating bird species and their numbers also limited the food consumption of foraging BNS as they had to spend time chasing away the intruders. Availability of the preferred prey fish species,Heteropnestus fossilis, forced BNS to stay throughout the year in their respective territories. High (> 60 cm) water levels were not suitable for BNS even though the patch had high prey abundance.  相似文献   

8.
H. Bai  Y. Sun  N. Liu  Y. Liu  F. Xue  Y. Li  S. Xu  A. Ni  J. Ye  Y. Chen  J. Chen 《Animal genetics》2018,49(3):226-236
Beak deformity (crossed beaks) is found in several indigenous chicken breeds including Beijing‐You studied here. Birds with deformed beaks have reduced feed intake and poor production performance. Recently, copy number variation (CNV) has been examined in many species and is recognized as a source of genetic variation, especially for disease phenotypes. In this study, to unravel the genetic mechanisms underlying beak deformity, we performed genome‐wide CNV detection using Affymetrix chicken high‐density 600K data on 48 deformed‐beak and 48 normal birds using penncnv . As a result, two and eight CNV regions (CNVRs) covering 0.32 and 2.45 Mb respectively on autosomes were identified in deformed‐beak and normal birds respectively. Further RT‐qPCR studies validated nine of the 10 CNVRs. The ratios of six CNVRs were significantly different between deformed‐beak and normal birds (< 0.01). Within these six regions, three and 21 known genes were identified in deformed‐beak and normal birds respectively. Bioinformatics analysis showed that these genes were enriched in six GO terms and one KEGG pathway. Five candidate genes in the CNVRs were further validated using RT‐qPCR. The expression of LRIG2 (leucine rich repeats and immunoglobulin like domains 2) was lower in birds with deformed beaks (< 0.01). Therefore, the LRIG2 gene could be considered a key factor in view of its known functions and its potential roles in beak deformity. Overall, our results will be helpful for future investigations of the genomic structural variations underlying beak deformity in chickens.  相似文献   

9.
Aerial flycatching — the lightning-fast seizure of flying small birds in the beak of larger, not normally predatory birds, only a few cases of which are treated in the literature — is here described and discussed for white storks (Ciconia ciconia) and crows (Corvidae).Communicated by F. Bairlein  相似文献   

10.
《Global Change Biology》2018,24(6):2585-2596
There is increasing evidence that projected near‐future carbon dioxide (CO2) levels can alter predator avoidance behaviour in marine invertebrates, yet little is known about the possible effects on predatory behaviours. Here we tested the effects of elevated CO2 on the predatory behaviours of two ecologically distinct cephalopod species, the pygmy squid, Idiosepius pygmaeus, and the bigfin reef squid, Sepioteuthis lessoniana. Both species exhibited an increased latency to attack and altered body pattern choice during the attack sequence at elevated CO2. I. pygmaeus also exhibited a 20% decrease in predation rate, an increased striking distance, and reduced preference for attacking the posterior end of prey at elevated CO2. Elevated CO2 increased activity levels of S. lessoniana comparable to those previously shown in I. pygmaeus, which could adversely affect their energy budget and increase their potential to be preyed upon. The effects of elevated CO2 on predatory behaviours, predation strategies and activity levels of cephalopods reported here could have far‐reaching consequences in marine ecosystems due to the ecological importance of cephalopods in the marine food web.  相似文献   

11.
This study characterizes the timing of feeding, moving and resting for the two-spotted spider mite, Tetranychus urticae Koch and a phytoseiid predator, Phytoseiulus persimilis Athias-Henriot. Feeding is the interaction between T. urticae and plants, and between P. persimilis and T. urticae. Movement plays a key role in locating new food resources. Both activities are closely related to survival and reproduction. We measured the time allocated to these behaviours at four ages of the spider mite (juveniles, adult females immediately after moult and adult females 1 and 3 days after moult) and two ages of the predatory mite (juveniles and adult females). We also examined the effect of previous spider mite-inflicted leaf damage on the spider mite behaviour. Juveniles of both the spider mite and the predatory mite moved around less than their adult counterparts. Newly emerged adult female spider mites spent most of their time moving, stopping only to feed. This represents the teneral phase, during which adult female spider mites are most likely to disperse. With the exception of this age group, spider mites moved more and fed less on previously damaged than on clean leaves. Because of this, the spider mite behaviour was initially more variable on damaged leaves. Phytoseiulus persimilis rested at all stages for a much larger percentage of the time and spent less time feeding than did T. urticae; the predators invariably rested in close proximity to the prey. Compared to adult predators, juveniles spent approximately four times as long handling a prey egg. The predator-prey interaction is dependent upon the local movement of both the predators and prey. These details of individual behaviours in a multispecies environment can provide an understanding of population dynamics.  相似文献   

12.
Prey selectivity of Piona exigua,a planktonic water mite   总被引:2,自引:0,他引:2  
Summary Females, males and nymphs of Piona exigua were observed during prey capture and ingestion. The encounter radius of the mite was very small, allowing the escape of some crustaceans, such as the calanoid copepod Boeckella. Cladocerans, such as Bosmina or Chydorus, with little or no pre-contact escape response were the most vulnerable to mite predation. Preference values in size-selection experiments varied widely between individual mites. Adult mites presented with two sizes of Daphnia carinata generally preferred the smaller prey. When four sizes were presented simultaneously, however, the preferences of female mites for each size were not significantly different. Patterns of prey selection varied with predator age and sex; for example, female mites preferred Daphnia to Simocephalus, Ceriodaphnia and Chydorus, while nymphs showed a strong preference for Chydorus over Ceriodaphnia. When two prey types were present in equal proportions, differences in total prey density (range 5 or 10/1 – 30 or 50/1) did not alter preferences between the prey species. The preference of female mites for a particular prey type generally increased with increasing relative abundance of the prey type in each of three experiments (Daphnia: Ceriodaphnia, Ceriodaphnia: Chydorus, and Daphnia: Simocephalus). These results imply switching behaviour in these mites. Our results indicate the value of direct observation of predatory behaviour as an adjunct to prey selection experiments. It is also apparent that predatory behaviour in the presence of more than one prey type may not be predictable from that observed in single-prey situations. Predation rates on particular prey species were sometimes reduced in the presence of another species. The relative proportions of prey eaten when two species were present could not be predicted from the number of each species eaten when they were presented separately.  相似文献   

13.
Common kestrels (Falco tinnunculus) and long-eared owls (Asio otus) in intensively farmed areas in Switzerland decreased markedly as a result of declining vole (Microtus spp.) populations. In order to counteract the loss of biodiversity in intensively farmed areas, the Swiss agri-environment scheme stipulates several types of ecological compensation areas, which together should take up 7% of the farmland. Among them are wild flower and herbaceous strips, which are not mown every year and which in summer support up to 8 times more small mammals than ordinary fields and grassland. This study investigates whether kestrels and long-eared owls preferentially hunt on ecological compensation areas and whether preferred hunting areas are related to the density of small mammals or to the density and height of the vegetation. Both kestrels and long-eared owls mainly hunted on freshly mown low-intensity meadows and artificial grassland, despite low densities of small mammals. Therefore, vegetation structure was more important for the selection of hunting sites than prey abundance. However, both predators preferred to hunt on freshly mown grassland and meadows bordering a wild flower or herbaceous strip. Voles from these strips probably invaded the adjacent freshly mown grassland and became an easy prey for kestrels and owls. In intensively farmed regions, ecological compensation areas, particularly those not mown each year, are an important refuge for small mammals, although in summer the small mammals are not directly accessible to hunting birds. Hence, a mosaic of different habitat types with grassland mown at different times of the year together with undisturbed strips is best suited to provide a year-round supply of accessible food for vole hunters.  相似文献   

14.
During a 6-year field study on the game farm ‘Benfontein’ in the central Republic of South Africa 1725 prey items were observed consumed by 17 free-ranging habituated black-footed catsFelis nigripes Burchell, 1824. Average prey size was 24.1 g. Eight males fed on significantly larger prey (27.9 g) than 9 females (20.8 g). Fifty-four prey species were classified by their average mass into 8 different size classes, 3 for mammals, 3 for birds, 1 for amphibians/reptiles, and 1 for invertebrates. Small mammals (5–40 g) constituted the most important prey class (39%) of total prey biomass followed by larger mammals (>100 g; 17%) and small birds (<40 g; 16%). Mammals and birds pooled comprised 72% and 26% of total prey biomass, respectively, whereas invertebrates and amphibians/reptiles combined constituted just 2% of total prey mass consumed. Three seasons of 4-months duration were recognized. Heterotherm prey items were unavailable during winter, when larger birds and mammals (> 100 g) were mainly consumed. Small rodents like the large-eared mouseMalacothrix typica, captured 595 times by both sexes, were particularly important during the reproductive season for females with kittens. Male black-footed cats showed less variation between prey size classes consumed among climatic seasons. This sex-specific difference in prey size consumption may help to reduce intra-specific competition.  相似文献   

15.
Prey impaling in shrikes Laniidae is considered to be a feeding adaptation to dismember and consume large prey and is unique among food-storing animals. However, other exaptations of this behaviour were recorded, including signals in mate choice, where cache size is a sign of male quality. Thus, due to a strong sexual selection, male and female birds might differ in their behavioural patterns of impaling behaviour. We examined sex differences in impaling behaviour of the Great Grey Shrike Lanius excubitor - one of the species where caches are known to be sexual signals. Data were collected in western Poland during breeding seasons in the years 2006-2010. In the studied population, we recorded several sex-specific differences in impaling behaviour. Males impaled prey, invertebrates as well as vertebrates, faster and with fewer attempts per impaling event than females. Sexes differed in the location of impaled prey; males selected more visible places, especially during the mating and courtship phase, whereas females impaled prey in concealed locations. Males also had slightly better impaling success compared to females. We suggest that sex differences in impaling behaviour may be due to different uses of impaled prey, and the better impaling skills of males may be the result of better experience in impaling which is forced by sexual selection in this species. We also discuss other factors which might trigger sex-specific differences in food caching by shrikes.  相似文献   

16.
Summary Numerous gutter-like furrows, up to 60 cm wide and up to 9 m long are preserved at the interface “Macrocephalus Beds”/“Callovian Marl” over a surface of 20 by 200 m. They are interpreted as feeding traces made by large marine vertebrates, most likely plesiosaurs and ichthyosaurs searching for food in the lime mud of the shallow Middle Jurassic sea floor. Possible prey animals were infaunal invertebrates (crustaceans) which produced an intricate meshwork of burrows (mainlyRhizocorallium irregulare andThalassinoides) in the bottom sediments, as well as infaunal bivalves. Evidence from cololites of predatory pelagic reptiles (ichthyosaurs, plesiosaurs) as well as reptile regurgitalites indicate that these animals fed not only on fast-swimming vertebrates and cephalopods but also on epi- and endobenthic invertebrates. In addition, the cololites show that the predators ingested considerable amounts of bottom sediment. Different sizes and shapes of the traces suggest that the gutters were produced by different reptiles or age groups. Candidates for the widest gutters are pliosaurs. Of the marine vertebrates known from Jurassic time, only the snout of adult pliosaurs of the genusLiopleurodon was broad enough to produce gutters more than 40 cm wide. Smaller, less than 15 cm wide gutters, could have been made by plesiosauroids or by the narrow pointed snouts of ichthyosaurs. Almost identical traces described from the Oxfordian of Spain and similar but smaller traces from the Lower Devonian of Prague are equally interpreted as feeding traces on the sea floor. Feeding traces of vertebrates in bottom sediments may give detailed information on the hunting behaviour of the predators. However, the attribution of the traces to definite vertebrate taxa remains uncertain.
  相似文献   

17.
M. W. Sabelis 《Oecologia》1990,82(3):289-298
Summary State-dependent changes in prey preference are among the phenomena to be expected in studies of predator behaviour. For example, the rate of attack on each prey type is well known to be affected by the state of satiation, the dynamics of which is often assumed to parallel that of gut fullness. An interesting question is whether satiation alone is the determinant of the attack rate or whether the particular mixture of prey types in the predator's direct environment has an additional influence by itself. To detect examples of the latter type the predictive method proposed by Cock (1978) may be useful. In the present paper the predictive tool is a model built on the assumption that gut fullness is the sole internal state variable determining the attack rate. It is provided with parameter estimates from observations in monocultures of each type and then used to predict predation in mixtures of prey types. When measured predation on these prey types differs from what is predicted, the model may be too simple in various respects, one of which is that predators change prey preference in response to their own sample estimates of the densities of each prey type and their (innate or sample) estimate of the profitability of each prey type in terms of reproductive success. Thus, the lack of fit of the model poses a challenging problem, for to explain it one must identify underlying causes, such as differences in prey quality with respect to scarce nutrients or noxious chemicals that need to be detoxified or rendered harmless in other ways. The predictive approach is illustrated by analysis of preference of predatory mites (Phytoseiulus persimilis Athias-Henriot and Typhlodromus occidentalis Nesbitt) with respect to various stages of development of their prey, the two-spotted spider mite (Tetranychus urticae Koch). The results show that the relation between attack rate and gut fullness might well explain prey stage preference of predatory mites when the prey stages are presented together rather than each alone. In another paper by Dicke et al. (1989) marked deviations between predicted and measured diet are reported when the predatory mite, Typhlodromus pyri Scheuten, was offered a choice between two prey species, i.e. apple rust mites and (larvae of) European red spider mites. The underlying causes are to be revealed by further research, the impetus of which is born out by use of the method proposed by Cock (1978) and extended in this paper.  相似文献   

18.
To assess bird predation pressure on butterflies, I investigated beak marks on the wings of two Lethe butterflies for 3 years in secondary temperate forests. If bird predation had significant effects on average longevity of butterflies, and if the number of specimens preyed upon was proportionate to the number of beak-marked specimens, the beak mark frequency would be negatively correlated with average longevity of a butterfly. Bird predation pressure is generally thought to influence average longevity of butterflies. Therefore, if there is a negative correlation between beak mark frequency and average longevity, bird predation pressure would be reflected in beak mark frequency. Beak mark frequency was negatively correlated with longevity in Lethe diana (Butler), the more abundant of the two species; thus, the beak mark frequency was considered to be a suitable index of bird predation pressure on the butterflies investigated in this study. In both Lethe species, beak mark frequency was higher in females than in males. Because female butterflies have a relatively smaller thorax and flight muscles and a larger abdomen that contains eggs, they are presumably weaker or less agile fliers than males, and are probably attacked more easily by birds. In autumn, butterflies were heavily attacked by birds irrespective of sex and species. Because the numbers of lepidopteran larvae, which are the preferred prey of many birds, decreased in autumn, birds were thought to shift their diets to alternative prey such as adult butterflies.  相似文献   

19.
Predator foraging behaviour affects the outcome of enemy–enemy interactions. Using a combination of fieldwork and laboratory experiments, we show that intraguild predation may be important in the field distribution of generalist predators that share a common prey: the eggs (and larvae) of the leaf beetle Phratora vulgatissima, a major insect pest in coppicing willow plantations. We focused on a species from the hoverfly genus Parasyrphus (Syrphidae), which may exhibit large temporal and spatial variation in density. Predator and prey densities were quantified in 40 field plots in willow plantations. The likelihood of finding hoverfly eggs declined with increasing densities of two predatory mirids, Orthotylus marginalis and Closterotomus fulvomaculatus, which exhibit less mobile behaviour similar to that of hoverfly larvae. The density of a more mobile predatory bug species, the anthocorid Anthocoris nemorum, was not associated with hoverfly occurrence. These results corroborate the hypothesis that less mobile predators should be stronger intraguild predators than mobilepredators. Further partial support for this hypothesis was obtained in the laboratory study where individual predators were presented with clutches of P. vulgatissima eggs containing one hoverfly egg: the less mobile C. fulvomaculatus and O. marginalis tended to consume the hoverfly egg more readily than the more mobile A. nemorum. However, most individuals of all three bug species consumed the egg of the potential competitor – the syrphid – within 24 h. The field study also showed that hoverfly occurrence was positively associated with the density of their prey and with the presence of nearby forests. We conclude that intraguild predation, abundance of prey and the surrounding habitat affect the distribution of hoverflies in this system and should be considered when developing biological control methods.  相似文献   

20.
Animals present an enormous variety of behavioural defensive mechanisms, which increase their survival, but often at a cost. Several animal taxa reduce their chances of being detected and/or recognized as prey items by freezing (remaining completely motionless) in the presence of a predator. We studied costs and benefits of freezing in immature Eumesosoma roeweri (Opiliones, Sclerosomatidae). Preliminary observations showed that these individuals often freeze in the presence of the syntopic predatory spider Schizocosa ocreata (Araneae, Lycosidae). We verified that harvestmen paired with predators spent more time freezing than when alone or when paired with a conspecific. Then, we determined that predator chemical cues alone did not elicit freezing behaviour. Next, we examined predator behaviour towards moving/non-moving prey and found that spiders attacked moving prey significantly more, suggesting an advantage of freezing in the presence of a predator. Finally, as measure of the foraging costs of freezing, we found that individuals paired with a predator for 2 h gained significantly less weight than individuals paired with a conspecific or left alone. Taken together, our results suggest that freezing may protect E. roeweri harvestmen from predatory attacks by wolf spiders, but at the cost of reduced food and/or water intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号