首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anthropologists and sociologists have, in recent years, paid attention to different aspects of halal food production and consumption. However, very few studies have focussed on the impact that halal food, its certification and halal dining practice have on socialisation, particularly for Muslims living in multicultural societies in Southeast Asia. Nasir and Pereira’s study (2008) is one of these exceptions. They studied the attitudes of Singaporean Malay Muslims towards halal food as well as the strategies they adopt when forced to share nonhalal dining environments. These authors have described such strategies as ‘defensive dining’ and have argued that, through them, Muslims in Singapore are able to fully partake in the multicultural life of the city state as well as integrate within the mainstream, mainly Chinese, society. This article discusses how my observations and fieldwork raise some questions about such overtly positive conclusions. Indeed, I suggest that to understand the impact that such ‘dining strategies’ may have on the integration of Singaporean Malay Muslims, we should not only observe the Malay Muslims’ viewpoint but also consider the impact such practices have on non‐Muslims, in particular the Chinese majority, as well as the role that stereotypes have in Singapore.  相似文献   

2.
Originally identified as an allelochemical involved in plant host-parasite interactions, strigolactones have more recently been shown to have much broader communication roles. Strigolactones function as a symbiotic communicator in plants and mycorrhizal fungi interactions and have also been shown to have hormonal roles in higher plants. This ability to act as both an exogenous and an endogenous signal has interesting implications with respect to the constraints on strigolactone structures. Probing the hormonal function of strigolactones using chemical biology and genetics is beginning to provide clues as to how strigolactones were co-opted as an allelochemical signal by parasitic plants.  相似文献   

3.
Similarities in developmental biology between human and nonhuman primates have resulted in the use of macaque species as models in perinatal research. Studies have frequently included invasive surgical procedures or may have required "blind" injections. Several techniques have been established in human subjects using ultrasound as a guide such as cordocentesis and fetal therapy. These techniques have been applied to the nonhuman primate laboratory setting, which significantly decreases the risk of pregnancy loss due to experimental intervention.  相似文献   

4.
Macrolides have enjoyed a resurgence as new derivatives and related compounds have come to market. These newer compounds have become important in the treatment of community-acquired pneumoniae and nontuberculosis-Mycobacterium diseases. In this review, the bacterial mechanisms of resistance to the macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics, the distribution of the various acquired genes that confer resistance, as well as mutations that have been identified in clinical and laboratory strains are examined.  相似文献   

5.
Microtubules undergo continual dynamic changes in mitotic cells as the mitotic spindle forms and is broken down and in interphase cells where they play a central role in intracellular trafficking, cell signaling, cell migration, and angiogenesis. Compounds that target the microtubule have been hugely successful in the clinic as chemotherapeutics, and this success is likely due to their ability to target cells regardless of their cell cycle stage. Additionally, new generation antibody-conjugated microtubule-targeting agents are improving the targeting of these drugs to tumors. Microtubule-targeting agents have been shown to have anti-angiogenic and vascular-disrupting properties as well as effects on cellular migration, intracellular trafficking, and cell secretion. There are a number of these compounds in development that target the vasculature, and different formulations of clinically used drugs are being developed to take advantage of these anti-angiogenic properties. Microtubule-targeting agents have also been shown to have the potential to treat neurodegenerative diseases, such as Alzheimer’s disease. Thus, drugs that target the microtubule will continue to have a major impact in oncology not only as anti-mitotics but also as potent inhibitors of interphase functions, and in future may also prove to be effective in reducing the consequences of neurodegenerative disease.  相似文献   

6.
The discovery of microRNAs has brought in another level of intricacy in gene regulation. These microRNAs are small non-coding RNAs that have dual ability to act as repressors or inducers of gene activity. MicroRNAs have been implicated in a wide spectrum of biological processes and their expressions have been found to be dysregulated in several diseases. Recently, microRNAs have emerged as a new area of interest in renal development and pathology. MicroRNA profilings have revealed a number of microRNAs that are specific to the kidney or restricted to certain regions of the organ suggesting possible exclusive roles therein. Recently, knockout studies have shown that these riboregulators are critical for normal renal growth and functional renal system. Individual microRNAs have also been identified in renal disease models including kidney cancers, diabetic nephropathy and polycystic kidney disease. Several mechanisms of modulating microRNA activity have also been introduced in recent years. Further progress in the understanding of microRNA activity, identification of microRNA signatures in different states as well as advancement of microRNA manipulation techniques will be valuable for kidney research.  相似文献   

7.
8.
Insect natural products and processes: new treatments for human disease   总被引:1,自引:0,他引:1  
In this overview, some of the more significant recent developments in bioengineering natural products from insects with use or potential use in modern medicine are described, as well as in utilisation of insects as models for studying essential mammalian processes such as immune responses to pathogens. To date, insects have been relatively neglected as sources of modern drugs although they have provided valuable natural products, including honey and silk, for at least 4-7000 years, and have featured in folklore medicine for thousands of years. Particular examples of Insect Folk Medicines will briefly be described which have subsequently led through the application of molecular and bioengineering techniques to the development of bioactive compounds with great potential as pharmaceuticals in modern medicine. Insect products reviewed have been derived from honey, venom, silk, cantharidin, whole insect extracts, maggots, and blood-sucking arthropods. Drug activities detected include powerful antimicrobials against antibiotic-resistant bacteria and HIV, as well as anti-cancer, anti-angiogenesis and anti-coagulant factors and wound healing agents. Finally, the many problems in developing these insect products as human therapeutic drugs are considered and the possible solutions emerging to these problems are described.  相似文献   

9.
Mitogen-activated protein (MAP) kinase cascades were originally identified as protein phosphorylation systems that control the division and the growth of yeast and animal cells. Such cascades consist of MAP kinases, MAP-kinase kinases, and MAP-kinase-kinase kinases. In addition, these organisms have been also shown to have structurally related but functionally different MAP kinase cascades, which are involved in various cellular processes such as a response to osmotic stress and apoptosis. Plants also have been shown to have a number of members of each kinase family. Although physiological and genetic functions of most plant members have yet to be established, some of members have been shown to be responsible for the cellular transmission of signals generated by wounding or a mechanical stress, which predicts that MAP kinase cascades may function in a variety of physiological processes in the plant cells. In the present review, we summarize recent progresses of researches on plant members of each kinase family as well as those of analyses of the cascades in other organisms.  相似文献   

10.
11.
We have previously demonstrated that proteasome serves as a central regulator of inflammation and macrophage function. Until recently, proteasomes have generally been considered to play a relatively passive role in the regulation of cellular activity, i.e., any ubiquitinated protein was considered to be in discriminatively targeted for degradation by the proteasome. We have demonstrated, however, by using specific proteasome protease inhibitors and knockout mice lacking specific components of immunoproteasomes, that proteasomes (containing X, Y, and Z protease subunits) and immunoproteasomes (containing LMP7, LMP2, and LMP10 protease subunits) have well-defined functions in cytokine induction and inflammation based on their individual protease activities. We have also shown that LPS-TLR mediated signaling in the murine RAW 264.7 macrophage cell line results in the replacement of macrophage immunoproteasomal subunits. Such modifications serve as pivotal regulators of LPS-induced inflammation. Our findings support the relatively novel concept that defects in structure/function of proteasome protease subunits caused by genetic disorders, aging, diet, or drugs may well have the potential to contribute to modulation of proteasome activity. Of particular relevance, we have identified quercetin and resveratrol, significant constituents present in berries and in red wine respectively, as two novel proteasome inhibitors that have been previously implicated as disease-modifying natural products. We posit that natural proteasome inhibitors/activators can potentially be used as therapeutic response modifiers to prevent/treat diseases through pathways involving the ubiquitin-proteasome pathway (UP-pathway), which likely functions as a master regulator involved in control of overall inflammatory responses. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics.  相似文献   

12.
Cytokines, which are small peptides that act as hormones of the immune system, affect cells throughout the body in a variety of different ways. These cellular signaling molecules often have synergistic or opposing effects on various cell types and often different cytokines have overlapping activities. There is great advantage, therefore, to be able to assess a pattern of cytokine responses in certain inflammatory, autoimmune, transplant or immunodeficiency states. This is one of the major advantages of the new particle-based flow cytometric assays, which have become available. We have employed such assays to analyze up to 10 different cytokines in cultured supernatants of stimulated mononuclear cells and in as little as 75 microL of serum from patients with a variety of different disorders. In developing these assays and validating them for use in our esoteric reference laboratory (ARUP Laboratories), we have found that a variety of heterophile antibodies can lead to both false positive and false negative results. This review will describe the development of our multi-analyte cytokine assays and document the interference derived from heterophile antibodies. Lastly, we will point out various procedures that we have utilized to include internal controls directly in the assays, which allow one to routinely detect these interfering antibodies, as well as methods we have developed to circumvent the interference posed by these antibodies.  相似文献   

13.
Microelectrodes have emerged as an important tool used by scientists to study biological changes in the brain and in single cells. This review briefly summarizes the ways in which microelectrodes as chemical sensors have furthered the field of neurobiology by reporting on changes that occur on the subsecond time scale. Microelectrodes have been used in a variety of fields including their use by electrophysiologists to characterize neuronal action potentials and develop neural prosthetics. Here we restrict our review to microelectrodes that have been used as chemical sensors. They have played a major role in many important neurobiological findings.  相似文献   

14.
Protein-DNA binding assays have been used in a variety of fields from fundamental studies regarding the binding process itself, to serving as probes for the detection, quantification and separation of target analytes. These assays have been used for the study of protein-DNA complex stoichiometry, the detection of DNA damage, and real-time separation of free and bound complexes by electrophoretic mobility. Synthetic DNA oligonucleotides, known as aptamers, have been increasingly used for affinity binding assays to proteins, as well as for separation studies and as biosensors. Recent advances have been made in protein-DNA binding assays using capillary electrophoresis, laser-induced fluorescence, fluorescence polarization, molecular beacons, and affinity chromatography.  相似文献   

15.
16.
Fungi are an extraordinary and immensely diverse group of microorganisms that colonize many habitats even competing with other microorganisms. Fungi have received recognition for interesting metabolic activities that have an enormous variety of biotechnological applications. Previously, volatile organic compounds produced by fungi (FVOCs) have been demonstrated to have a great capacity for use as antagonist products against plant pathogens. However, in recent years, FVOCs have been received attention as potential alternatives to the use of traditional pesticides and, therefore, as important eco-friendly biotechnological tools to control plant pathogens. Therefore, highlighting the current state of knowledge of these fascinating FVOCs, the actual detection techniques and the bioactivity against plant pathogens is essential to the discovery of new products that can be used as biopesticides.  相似文献   

17.
Collagens are large, triple-helical proteins that form fibrils and network-like structures in the extracellular matrix. The collagens may have participated in the evolution of the metazoans from their very earliest origins. Cell adhesion receptors, such as the integrins, are at least as old as the collagens. Still, the early metazoan cells might not have been able to anchor directly to collagen fibrils, since the integrin-type collagen receptors have only been identified in vertebrates. Instead, the early metazoans may have used integrin-type receptors in the recognition of collagen-binding glycoproteins. It is possible that specialized, high-avidity collagen-receptor integrins have become instrumental for the evolution of bone, cartilage, circulatory and immune systems in the chordates. In vertebrates, specific collagen-binding receptor tyrosine kinases send signals into cells after adhesion to collagen. These receptors are members of the discoidin domain receptor (DDR) group. The evolutionary history of DDRs is poorly known at this time. DDR orthologs have been found in many invertebrates, but their ability to function as collagen receptors has not yet been tested. The two main categories of collagens, fibrillar and non-fibrillar, already exist in the most primitive metazoans, such as the sponges. Interestingly, both integrin and DDR families seem to have members that favor either one or the other of these two groups of collagens.  相似文献   

18.
Proteomics applied to exercise physiology: a cutting-edge technology   总被引:1,自引:0,他引:1  
Exercise research has always drawn the attention of the scientific community because it can be widely applied to sport training, health improvement, and disease prevention. For many years numerous tools have been used to investigate the several physiological adaptations induced by exercise stimuli. Nowadays a closer look at the molecular mechanisms underlying metabolic pathways and muscular and cardiovascular adaptation to exercise are among the new trends in exercise physiology research. Considering this, to further understand these adaptations as well as pathology attenuation by exercise, several studies have been conducted using molecular investigations, and this trend looks set to continue. Through enormous biotechnological advances, proteomic tools have facilitated protein analysis within complex biological samples such as plasma and tissue, commonly used in exercise research. Until now, classic proteomic tools such as one- and two-dimensional polyacrylamide gel electrophoresis have been used as standard approaches to investigate proteome modulation by exercise. Furthermore, other recently developed in gel tools such as differential gel electrophoresis (DIGE) and gel-free techniques such as the protein labeling methods (ICAT, SILAC, and iTRAQ) have empowered proteomic quantitative analysis, which may successfully benefit exercise proteomic research. However, despite the three decades of 2-DE development, neither classic nor novel proteomic tools have been convincingly explored by exercise researchers. To this end, this review gives an overview of the directions in which exercise-proteome research is moving and examines the main tools that can be used as a novel strategy in exercise physiology investigation.  相似文献   

19.
ABSTRACT: For over a century, the origin of eukaryotes has been a topic of intense debate among scientists. Although it has become widely accepted that organelles such as the mitochondria and chloroplasts arose via endosymbiosis, the origin of the eukaryotic nucleus remains enigmatic. Numerous models for the origin of the nucleus have been proposed over the years, many of which use endosymbiosis to explain its existence. Proposals of microbes whose ancestors may have served as either a host or a guest in various endosymbiotic scenarios abound, none of which have been able to sufficiently incorporate the cell biological as well as phylogenetic data which links these organisms to the nucleus. While it is generally agreed that eukaryotic nuclei share more features in common with archaea rather than with bacteria, different studies have identified either one or the other of the two major groups of archaea as potential ancestors, leading to somewhat of a stalemate. This paper seeks to resolve this impasse by presenting evidence that not just one, but a pair of archaea might have served as host to the bacterial ancestor of the mitochondria. This pair may have consisted of ancestors of both Ignicoccus hospitalis as well as its ectosymbiont/ectoparasite 'Nanoarchaeum equitans'.  相似文献   

20.
In 1961, Evans and King documented the mechanical properties of trabecular bone from multiple locations in the proximal human femur. Since this time, many investigators have cataloged the distribution of trabecular bone material properties from multiple locations within the human skeleton to include femur, tibia, humerus, radius, vertebral bodies, and iliac crest. The results of these studies have revealed tremendous variations in material properties and anisotropy. These variations have been attributed to functional remodeling as dictated by Wolff's Law. Both linear and power functions have been found to explain the relationship between trabecular bone density and material properties. Recent studies have re-emphasized the need to accurately quantify trabecular bone architecture proposing several algorithms capable of determining the anisotropy, connectivity and morphology of the bone. These past studies, as well as continuing work, have significantly increased the accuracy of analytical and experimental models investigating bone, and bone/implant interfaces as well as enhanced our perspective towards understanding the factors which may influence bone formation or resorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号