首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 661 毫秒
1.
Chebaro Y  Derreumaux P 《Proteins》2009,75(2):442-452
Aggregation of the Abeta1-40/Abeta1-42 peptides is a key factor in Alzheimer's disease. Though the inhibitory effect of N-methylated Abeta16-22 (mAbeta16-22) peptides is well characterized in vitro, there is little information on how they disassemble full-length Abeta fibrils or block fibril formation. Here, we report coarse-grained implicit solvent molecular dynamics (MD) and replica exchange molecular dynamics (REMD) simulations on Abeta16-22 and mAbeta16-22 monomers, and then a preformed six-chain Abeta16-22 bilayer with either four copies of Abeta16-22 or four copies of mAbeta16-22. Our simulations show that the effect of N-methylation on mAbeta16-22 monomer is to reduce the density of compact forms. While 100 ns MD trajectories do not reveal any significant differences between the two ten-chain systems, the REMD simulations totaling 1 micros help understand the first steps of Abeta16-22 protofibril disassembly by N-methylated inhibitors. Notably, we find that mAbeta16-22 preferentially interacts with Abeta16-22 by blocking both beta-sheet extension and lateral association of layers, but also by intercalation of the inhibitors allowing sequestration of Abeta16-22 peptides. This third binding mode is particularly appealing for blocking Abeta fibrillogenesis.  相似文献   

2.
The 16-22 amino-acid fragment of the beta-amyloid peptide associated with the Alzheimer's disease, Abeta, is capable of forming amyloid fibrils. Here we study the aggregation mechanism of Abeta16-22 peptides by unbiased thermodynamic simulations at the atomic level for systems of one, three, and six Abeta16-22 peptides. We find that the isolated Abeta16-22 peptide is mainly a random coil in the sense that both the alpha-helix and beta-strand contents are low, whereas the three- and six-chain systems form aggregated structures with a high beta-sheet content. Furthermore, in agreement with experiments on Abeta16-22 fibrils, we find that large parallel beta-sheets are unlikely to form. For the six-chain system, the aggregated structures can have many different shapes, but certain particularly stable shapes can be identified.  相似文献   

3.
Alzheimer's disease is a debilitating neurodegenerative disorder associated with the abnormal self-assembly of amyloid-beta (Abeta) peptides into fibrillar species. N-methylated peptides homologous to the central hydrophobic core of the Abeta peptide are potent inhibitors of this aggregation process. In this work, we use fully atomistic molecular dynamics simulations to study the interactions of the N-methylated peptide inhibitor Abeta16-20m (Ac-Lys(16)-(Me)Leu(17)-Val(18)-(Me)Phe(19)-Phe(20)-NH(2)) with a model protofilament consisting of Alzheimer Abeta16-22 peptides. Our simulations indicate that the inhibitor peptide can bind to the protofilament at four different sites: 1), at the edge of the protofilament; 2), on the exposed face of a protofilament layer; 3), between the protofilament layers; and 4), between the protofilament strands. The different binding scenarios suggest several mechanisms of fibrillogenesis inhibition: 1), fibril inhibition of longitudinal growth (in the direction of monomer deposition); 2), fibril inhibition of lateral growth (in the direction of protofilament assembly); and 3), fibril disassembly by strand removal and perturbation of the periodicity of the protofilament (disruption of fibril morphology). Our simulations suggest that the Abeta16-20m inhibitor can act on both prefibrillar species and mature fibers and that the specific mechanism of inhibition may depend on the structural nature of the Abeta aggregate. Disassembly of the fibril can be explained by a mechanism through which the inhibitor peptides bind to disaggregated or otherwise free Abeta16-22 peptides in solution, leading to a shift in the equilibrium from a fibrillar state to one dominated by inhibitor-bound Abeta16-22 peptides.  相似文献   

4.
A novel computational approach to the structural analysis of ordered beta-aggregation is presented and validated on three known amyloidogenic polypeptides. The strategy is based on the decomposition of the sequence into overlapping stretches and equilibrium implicit solvent molecular dynamics (MD) simulations of an oligomeric system for each stretch. The structural stability of the in-register parallel aggregates sampled in the implicit solvent runs is further evaluated using explicit water simulations for a subset of the stretches. The beta-aggregation propensity along the sequence of the Alzheimer's amyloid-beta peptide (Abeta(42)) is found to be highly heterogeneous with a maximum in the segment V(12)HHQKLVFFAE(22) and minima at S(8)G(9), G(25)S(26), G(29)A(30), and G(38)V(39), which are turn-like segments. The simulation results suggest that these sites may play a crucial role in determining the aggregation tendency and the fibrillar structure of Abeta(42). Similar findings are obtained for the human amylin, a 37-residue peptide that displays a maximal beta-aggregation propensity at Q(10)RLANFLVHSSNN(22) and two turn-like sites at G(24)A(25) and G(33)S(34). In the third application, the MD approach is used to identify beta-aggregation "hot-spots" within the N-terminal domain of the yeast prion Ure2p (Ure2p(1-94)) and to design a double-point mutant (Ure2p-N4748S(1-94)) with lower beta-aggregation propensity. The change in the aggregation propensity of Ure2p-N4748S(1-94) is verified in vitro using the thioflavin T binding assay.  相似文献   

5.
A potential goal in the prevention or therapy of Alzheimer's disease is to decrease or eliminate neuritic plaques composed of fibrillar beta-amyloid (Abeta). In this paper we describe N-methyl amino acid containing congeners of the hydrophobic "core domain" of Abeta that inhibit the fibrillogenesis of full-length Abeta. These peptides also disassemble preformed fibrils of full-length Abeta. A key feature of the inhibitor peptides is that they contain N-methyl amino acids in alternating positions of the sequence. The most potent of these inhibitors, termed Abeta16-22m, has the sequence NH(2)-K(Me-L)V(Me-F)F(Me-A)E-CONH(2). In contrast, a peptide, NH(2)-KL(Me-V)(Me-F)(Me-F)(Me-A)-E-CONH(2), with N-methyl amino acids in consecutive order, is not a fibrillogenesis inhibitor. Another peptide containing alternating N-methyl amino acids but based on the sequence of a different fibril-forming protein, the human prion protein, is also not an inhibitor of Abeta40 fibrillogenesis. The nonmethylated version of the inhibitor peptide, NH(2)-KLVFFAE-CONH(2) (Abeta16-22), is a weak fibrillogenesis inhibitor. Perhaps contrary to expectations, the Abeta16-22m peptide is highly soluble in aqueous media, and concentrations in excess of 40 mg/mL can be obtained in buffers of physiological pH and ionic strength, compared to only 2 mg/mL for Abeta16-22. Analytical ultracentrifugation demonstrates that Abeta16-22m is monomeric in buffer solution. Whereas Abeta16-22 is susceptible to cleavage by chymotrypsin, the methylated inhibitor peptide Abeta16-22m is completely resistant to this protease. Circular dichroic spectroscopy of Abeta16-22m indicates that this peptide is a beta-strand, albeit with an unusual minimum at 226 nm. In summary, the inhibitor motif is that of alternating N-methyl and nonmethylated amino acids in a sequence critical for Abeta40 fibrillogenesis. These inhibitors appear to act by binding to growth sites of Abeta nuclei and/or fibrils and preventing the propagation of the network of hydrogen bonds that is essential for the formation of an extended beta-sheet fibril.  相似文献   

6.
Increasing evidence indicates that soluble aggregates of amyloid beta protein (Abeta) are neurotoxic. However, difficulty in isolating these unstable, dynamic species impedes studies of Abeta and other aggregating peptides and proteins. In this study, hydrogen-deuterium exchange (HX) detected by mass spectrometry (MS) was used to measure Abeta(1-40) aggregate distributions without purification or modification that might alter the aggregate structure or distribution. Different peaks in the mass spectra were assigned to monomer, low molecular weight oligomer, intermediate, and fibril based on HX labeling behavior and complementary assays. After 1 h labeling, the intermediates incorporated approximately ten more deuterons relative to fibrils, indicating a more solvent exposed structure of such intermediates. HX-MS also showed that the intermediate species dissociated much more slowly to monomer than did the very low molecular weight oligomers that were formed at very early times in Abeta aggregation. Atomic force microscopy (AFM) measurements revealed the intermediates were roughly spherical with relatively homogenous diameters of 30-50 nm. Quantitative analysis of the HX mass spectra showed that the amount of intermediate species was correlated with Abeta toxicity patterns reported in a previous study under the same conditions. This study also demonstrates the potential of the HX-MS approach to characterizing complex, multi-component oligomer distributions of aggregating peptides and proteins.  相似文献   

7.
Cerebral amyloid angiopathy associated with Alzheimer's disease is characterized by cerebrovascular deposition of the amyloid-beta protein (Abeta). Abeta elicits a number of morphological and biochemical alterations in the cerebral microvasculature, which culminate in hemorrhagic stroke. Among these changes, compromise of the blood-brain barrier has been described in Alzheimer's disease brain, transgenic animal models of Alzheimer's disease, and cell culture experiments. In the current study, presented data illustrates that isolated soluble Abeta(1-40) aggregates, but not unaggregated monomer or mature fibril, enhance permeability in human brain microvascular endothelial monolayers. Abeta(1-40)-induced changes in permeability are paralleled by both a decrease in transendothelial electrical resistance and a re-localization of the tight junction-associated protein zonula occludin-1 away from cell borders and into the cytoplasm. Small soluble Abeta(1-40) aggregates are confirmed to be the most potent stimulators of endothelial monolayer permeability by establishing an inverse relationship between average aggregate size and stimulated changes in diffusional permeability coefficients. These results support previous findings demonstrating that small soluble Abeta(1-40) aggregates are also primarily responsible for endothelial activation, suggesting that these same species may elicit other changes in the cerebrovasculature associated with cerebral amyloid angiopathy and Alzheimer's disease.  相似文献   

8.
Zanuy D  Ma B  Nussinov R 《Biophysical journal》2003,84(3):1884-1894
Experimentally, short peptides have been shown to form amyloids similar to those of their parent proteins. Consequently, they present useful systems for studies of amyloid conformation. Here we simulate extensively the NFGAIL peptide, derived from the human islet amyloid polypeptide (residues 22-27). We simulate different possible strand/sheet organizations, from dimers to nonamers. Our simulations indicate that the most stable conformation is an antiparallel strand orientation within the sheets and parallel between sheets. Consistent with the alanine mutagenesis, we find that the driving force is the hydrophobic effect. Whereas the NFGAIL forms stable oligomers, the NAGAIL oligomer is unstable, and disintegrates very quickly after the beginning of the simulation. The simulations further identify a minimal seed size. Combined with our previous simulations of the prion-derived AGAAAAGA peptide, AAAAAAAA, and the Alzheimer Abeta fragments 16-22, 24-36, 16-35, and 10-35, and the solid-state NMR data for Abeta fragments 16-22, 10-35, and 1-40, some insight into the length and the sequence matching effects may be obtained.  相似文献   

9.
Multiple long molecular dynamics simulations are used to probe the oligomerization mechanism of Abeta(16-22) (KLVFFAE) peptides. The peptides, in the monomeric form, adopt either compact random-coil or extended beta strand-like structures. The assembly of the low-energy oligomers, in which the peptides form antiparallel beta sheets, occurs by multiple pathways with the formation of an obligatory alpha-helical intermediate. This observation and the experimental results on fibrillogenesis of Abeta(1-40) and Abeta(1-42) peptides suggest that the assembly mechanism (random coil --> alpha helix --> beta strand) is universal for this class of peptides. In Abeta(16-22) oligomers both interpeptide hydrophobic and electrostatic interactions are critical in the formation of the antiparallel beta sheet structure. Mutations of either hydrophobic or charged residues destabilize the oligomer, which implies that the 16-22 fragments of Arctic (E22G), Dutch (E22Q), and Italian (E22K) mutants are unlikely to form ordered fibrils.  相似文献   

10.
The mechanisms of deposition and dissociation are implicated in the assembly of amyloid fibrils. To investigate the kinetics of unbinding of Abeta(16-22) monomers from preformed fibrils, we use molecular dynamics (MD) simulations and the structures for Abeta(16-22) amyloid fibrils. Consistent with experimental studies, the dissociation of Abeta(16-22) peptides involves two main stages, locked and docked, after which peptides unbind. The lifetime of the locked state, in which a peptide retains fibril-like structure and interactions, extends up to 0.5 micros under normal physiological conditions. Upon cooperative rupture of all fibril-like hydrogen bonds (HBs) with the fibril, a peptide enters a docked state. This state is populated by disordered random coil conformations and its lifetime ranges from approximately 10 to 200 ns. The docked state is stabilized by hydrophobic side chain interactions, while the contribution from HBs is small. Our simulations also suggest that the peptides located on fibril edges may form stable beta-strand conformations distinct from the fibril "bulk". We propose that such edge peptides can act as fibril caps, which impede fibril elongation. Our results indicate that the interactions between unbinding peptides constitute the molecular basis for cooperativity of peptide dissociation. The kinetics of fibril growth is reconstructed from unbinding assuming the reversibility of deposition/dissociation pathways. The relation of in silica dissociation kinetics to experimental observations is discussed.  相似文献   

11.
The brains of Alzheimer's disease (AD) patients contain large numbers of amyloid plaques that are rich in fibrils composed of 40- and 42-residue amyloid-beta (Abeta) peptides. Several lines of evidence indicate that fibrillar Abeta and especially soluble Abeta aggregates are important in the etiology of AD. Recent reports also stress that amyloid aggregates are polymorphic and that a single polypeptide can fold into multiple amyloid conformations. Here we demonstrate that Abeta-(1-40) can form soluble aggregates with predominant beta-structures that differ in stability and morphology. One class of aggregates involved soluble Abeta protofibrils, prepared by vigorous overnight agitation of monomeric Abeta-(1-40) at low ionic strength. Dilution of these aggregation reactions induced disaggregation to monomers as measured by size exclusion chromatography. Protofibril concentrations monitored by thioflavin T fluorescence decreased in at least two kinetic phases, with initial disaggregation (rate constant approximately 1 h(-1)) followed by a much slower secondary phase. Incubation of the reactions without agitation resulted in less disaggregation at slower rates, indicating that the protofibrils became progressively more stable over time. In fact, protofibrils isolated by size exclusion chromatography were completely stable and gave no disaggregation. A second class of soluble Abeta aggregates was generated rapidly (<10 min) in buffered 2% hexafluoroisopropanol (HFIP). These aggregates showed increased thioflavin T fluorescence and were rich in beta-structure by circular dichroism. Electron microscopy and atomic force microscopy revealed initial globular clusters that progressed over several days to soluble fibrous aggregates. When diluted out of HFIP, these aggregates initially were very unstable and disaggregated completely within 2 min. However, their stability increased as they progressed to fibers. Relative to Abeta protofibrils, the HFIP-induced aggregates seeded elongation by Abeta monomer deposition very poorly. The techniques used to distinguish these two classes of soluble Abeta aggregates may be useful in characterizing Abeta aggregates formed in vivo.  相似文献   

12.
Liao MQ  Tzeng YJ  Chang LY  Huang HB  Lin TH  Chyan CL  Chen YC 《FEBS letters》2007,581(6):1161-1165
Aggregated beta-amyloid (Abeta) peptides are neurotoxic and cause neuronal death both in vitro and in vivo. Although the formation of a beta-sheet structure is usual required to form aggregates, the relationship between neurotoxicity and the Abeta sequence remains unclear. To explore the correlation between Abeta sequence, secondary structure, aggregative ability, and neurotoxicity, we utilized both full-length and fragment-truncated Abeta peptides. Using a combination of spectroscopic and cellular techniques, we demonstrated that neurotoxicity and aggregative ability are correlated while the relationship between these characteristics and secondary structure is not significant. The hydrophobic C-terminus, particularly the amino acids of 17-21, 25-35, and 41-42, is the main region responsible for neurotoxicity and aggregation. Deleting residues 17-21, 25-35 or 41-42 significantly reduced the toxicity. On the other hand, truncation of the peptides at either residues 22-24 or residues 36-40 had little effect on toxicity and aggregative ability. While the N-terminal residues 1-16 may not play a major role in neurotoxicity and aggregation, a lack of N-terminal fragment Abeta peptide, (e.g. Abeta17-35), does not display the neurotoxicity of either full-length or 17-21, 25-35 truncated Abeta peptides.  相似文献   

13.
The conversion of soluble, nontoxic amyloid beta-protein (Abeta) to aggregated, toxic Abeta rich in beta-sheet structures is considered to be the key step in the development of Alzheimer's disease. Therefore, extensive studies have been carried out on the mechanisms involved in Abeta aggregation and the characterization of Abeta aggregates formed in aqueous solutions mimicking biological fluids. On the other hand, several investigators pointed out that membranes play an important role in Abeta aggregation. However, it remains unclear whether Abeta aggregates formed in solution and membranes are identical and whether the former can bind to membranes. In this study, using a dye-labeled Abeta-(1-40) as well as native Abeta-(1-40), the properties of Abeta aggregates formed in buffer and raft-like membranes composed of monosialoganglioside GM1/cholesterol/sphingomyelin were compared. Fourier transform infrared spectroscopic measurements suggested that Abeta aggregates formed in buffer and in membranes have different beta-sheet structures. Fluorescence experiments revealed that Abeta aggregated in buffer did not show any affinity for membranes.  相似文献   

14.
Marchut AJ  Hall CK 《Proteins》2007,66(1):96-109
Aggregation in the brain of polyglutamine-containing proteins is either a cause or an associated symptom of nine hereditary neurodegenerative disorders including Huntington's disease. The molecular level mechanisms by which these proteins aggregate are still unclear. In an effort to shed light on this important phenomenon, we are investigating the aggregation of model polyglutamine peptides using molecular-level computer simulation with a simplified model of polyglutamine that we have developed. This model accounts for the most important types of intra- and inter-molecular interactions-hydrogen bonding and hydrophobic interactions-while allowing the folding process to be simulated in a reasonable time frame. The model is used to examine the folding of isolated polyglutamine peptides 16, 32, and 48 residues long and the folding and aggregation of systems of 24 model polyglutamine peptides 16, 24, 32, 36, 40, and 48 residues long. Although the isolated polyglutamine peptides did form some alpha and beta backbone-backbone hydrogen bonds they did not have as many of these bonds as they would have if they had folded into a complete alpha helix or beta sheet. In one of the simulations on the isolated polyglutamine peptide 48 residues long, we observed a structure that resembles a beta helix. In the multi-chain simulations we observed amorphous aggregates at low temperatures, ordered aggregates with significant beta sheet character at intermediate temperatures, and random coils at high temperatures. We have found that the temperature at which the model peptides undergo the transition from amorphous aggregates to ordered aggregates and the temperature at which the model peptides undergo the transition from ordered aggregates to random coils increase with increasing chain length. Our finding that the stability of the ordered aggregates increases as the peptide chain length increases may help to explain the experimentally observed relation between polyglutamine tract length and aggregation in vitro and disease progression in vivo. We have also observed in our simulations that the optimal temperature for the formation of beta sheets increases with chain length up to 36 glutamine residues but not beyond. Equivalently, at fixed temperature we find a transition from a region dominated by random coils at chain lengths less than 36 to a region dominated by relatively ordered beta sheet structures at chain lengths greater than 36. Our finding of this critical chain length of 36 glutamine residues is interesting because a critical chain length of 37 glutamine residues has been observed experimentally.  相似文献   

15.
Beta-amyloid (Abeta) aggregates at low concentrations in vivo, and this may involve covalently modified forms of these peptides. Modification of Abeta by 4-hydroxynonenal (4-HNE) initially increases the hydrophobicity of these peptides and subsequently leads to additional reactions, such as peptide cross-linking. To model these initial events, without confounding effects of subsequent reactions, we modified Abeta at each of its amino groups using a chemically simpler, close analogue of 4-HNE, the octanoyl group: K16-octanoic acid (OA)-Abeta, K28-OA-Abeta, and Nalpha-OA-Abeta. Octanoylation of these sites on Abeta-(1-40) had strikingly different effects on fibril formation. K16-OA-Abeta and K28-OA-Abeta, but not Nalpha-OA-Abeta, had increased propensity to aggregate. The type of aggregate (electron microscopic appearance) differed with the site of modification. The ability of octanoyl-Abeta peptides to cross-seed solutions of Abeta was the inverse of their ability to form fibrils on their own (i.e. Abeta approximately Nalpha-OA-Abeta>K16-OA-Abeta>K28-OA-Abeta). By CD spectroscopy, K16-OA-Abeta and K28-OA-Abeta had increased beta-sheet propensity compared with Abeta-(1-40) or Nalpha-OA-Abeta. K16-OA-Abeta and K28-OA-Abeta were more amphiphilic than Abeta-(1-40) or Nalpha-OA-Abeta, as shown by lower "critical micelle concentrations" and higher monolayer collapse pressures. Finally, K16-OA-Abeta and K28-OA-Abeta are much more cytotoxic to N2A cells than Abeta-(1-40) or Nalpha-OA-Abeta. The greater cytotoxicity of K16-OA-Abeta and K28-OA-Abeta may reflect their greater amphiphilicity. We conclude that lipidation can make Abeta more prone to aggregation and more cytotoxic, but these effects are highly site-specific.  相似文献   

16.
The Amyloid beta peptide (Abeta) of Alzheimer's diseases (AD) is closely linked to the progressive cognitive decline associated with the disease. Cu2+ ions can induce the de novo aggregation of the Abeta peptide into non-amyloidogenic aggregates and the production of a toxic species. The mechanism by which Cu2+ mediates the change from amyloid material toward Cu2+ induced aggregates is poorly defined. Here we demonstrate that the aggregation state of Abeta1-42 at neutral pH is governed by the Cu2+:peptide molar ratio. By probing amyloid content and total aggregation, we observed a distinct Cu2+ switching effect centered at equimolar Cu2+:peptide ratios. At sub-equimolar Cu2+:peptide molar ratios, Abeta1-42 forms thioflavin-T reactive amyloid; conversely, at supra-equimolar Cu2+:peptide molar ratios, Abeta1-42 forms both small spherical oligomers approximately 10-20 nm in size and large amorphous aggregates. We demonstrate that these insoluble aggregates form spontaneously via a soluble species without the presence of an observable lag phase. In seeding experiments, the Cu2+ induced aggregates were unable to influence fibril formation or convert into fibrillar material. Aged Cu2+ induced aggregates are toxic when compared to Abeta1-42 aged in the absence of Cu2+. Importantly, the formation of dityrosine crosslinked Abeta, by the oxidative modification of the peptide, only occurs at equimolar molar ratios and above. The formation of dityrosine adducts occurs following the initiation of aggregation and hence does not drive the formation of the Cu2+ induced aggregates. These results define the role Cu2+ plays in modulating the aggregation state and toxicity of Abeta1-42.  相似文献   

17.
Alzheimer's disease (AD) may be caused by toxic aggregates formed from amyloid-beta (Abeta) peptides. By using Thioflavin T, a dye that specifically binds to beta-sheet structures, we found that highly toxic forms of Abeta-aggregates were formed at the initial stage of fibrillogenesis, which is consistent with recent reports on Abeta oligomers. Formation of such aggregates depends on factors that affect both nucleation and elongation. As reported previously, addition of Abeta42 systematically accelerated the nucleation of Abeta40, most likely because of the extra hydrophobic residues at the C terminus of Abeta42. At Abeta42-increased specific ratio (Abeta40: Abeta42 = 10: 1), on the other hand, not only accelerated nucleation but also induced elongation were observed, suggesting pathogenesis of early-onset AD. Because a larger proportion of Abeta40 than Abeta42 was still required for this phenomenon, we assumed that elongation does not depend only on hydrophobic interactions. Without any change in the C-terminal hydrophobic nature, elongation was effectively induced by mixing wild type Abeta40 with Italian variant Abeta40 (E22K) or Dutch variant (E22Q). We suggest that Abeta peptides in specific compositions that balance hydrophilic and hydrophobic interactions promote the formation of toxic beta-aggregates. These results may introduce a new therapeutic approach through the disruption of this balance.  相似文献   

18.
Talmard C  Bouzan A  Faller P 《Biochemistry》2007,46(47):13658-13666
Aggregation of the peptide amyloid-beta (Abeta) to amyloid plaques is a key event in Alzheimer's disease. According to the amyloid cascade hypothesis, Abeta aggregates are toxic to neurons via the production of reactive oxygen species and are hence directly involved in the cause of the disease. Zinc ions play an important role, because they are able to bind to Abeta and influence the aggregation properties. In the present work isothermal titration calorimetry and Zn sensors (zincon, Newport Green, and zinquin) were used to investigate the interaction of Zn with the full-length Abeta1-40 and Abeta1-42, as well as the truncated Abeta1-16 and Abeta1-28. The results suggest that Zn binding to Abeta induces a release of approximately 0.9 proton by the peptide. This correspond to the expected value upon Zn binding to the three histidines and indicates that further ligands are not deprotonated upon Zn binding. Such behavior is expected for carboxylates, but not the N-terminus. Moreover, the apparent dissociation constant (Kd,app) of Zn binding to all forms of Abeta is in the low micromolar range (1-20 microM) and rather independent of the aggregation state including soluble Abeta, Abeta fibrils, or Zn-induced Abeta aggregates. Finally, Zn in the soluble or aggregated Zn-Abeta form is well accessible for Zn chelators. The potential repercussions on metal chelation therapy are discussed.  相似文献   

19.
To probe the role of temperature in the conversion of soluble Alzheimer's beta-amyloid peptide (Abeta) to insoluble beta-sheet rich aggregates, we analyzed the solution conformation of Abeta(1-40) from 0 to 98 degrees C by far-UV circular dichroism (CD) and native gel electrophoresis. The CD spectra of 15-300 microg/ml Abeta(1-40) in aqueous solution (pH approximately 4.6) at 0 degrees C are concentration-independent and suggest a substantially unfolded and/or unusually folded conformation characteristic of Abeta monomer or dimer. Heating from 0 to 37 degrees C induces a rapid reversible coil to beta-strand transition that is independent of the peptide concentration and thus is not linked to oligomerization. Consequently, this transition may occur within the Abeta(1-40) monomer or dimer. Incubation at 37 degrees C leads to slow reversible concentration-dependent beta-sheet accumulation; heating to 85 degrees C induces further beta-sheet folding and oligomerization. Our results demonstrate the importance of temperature and thermal history for the conformation of Abeta.  相似文献   

20.
Ma QF  Hu J  Wu WH  Liu HD  Du JT  Fu Y  Wu YW  Lei P  Zhao YF  Li YM 《Biopolymers》2006,83(1):20-31
Amyloid-beta peptide (Abeta) is the principal constituent of plaques associated with Alzheimer's disease (AD) and is thought to be responsible for the neurotoxicity associated with the disease. Copper binding to Abeta has been hypothesized to play an important role in the neruotoxicity of Abeta and free radical damage, and Cu2+ chelators represent a possible therapy for AD. However, many properties of copper binding to Abeta have not been elucidated clearly, and the location of copper binding sites on Abeta is also in controversy. Here we have used a range of spectroscopic techniques to characterize the coordination of Cu2+ to Abeta(1-16) in solution. Electrospray ionization mass spectrometry shows that copper binds to Abeta(1-16) at pH 6.0 and 7.0. The mode of copper binding is highly pH dependent. Circular dichroism results indicate that copper chelation causes a structural transition of Abeta(1-16). UV-visible absorption spectra suggest that three nitrogen donor ligands and one oxygen donor ligand (3N1O) in Abeta(1-16) may form a type II square-planar coordination geometry with Cu2+. By means of fluorescence spectroscopy, competition studies with glycine and L-histidine show that copper binds to Abeta(1-16) with an affinity of Ka approximately 10(7) M(-1) at pH 7.8. Besides His6, His13, and His14, Tyr10 is also involved in the coordination of Abeta(1-16) with Cu2+, which is supported by 1H NMR and UV-visible absorption spectra. Evidence for the link between Cu2+ and AD is growing, and this work has made a significant contribution to understanding the mode of copper binding to Abeta(1-16) in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号