首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the recently found functions of pituitary adenylate cyclase activating polypeptide (PACAP) is the modulation of circadian rhythms. Widespread distribution of PACAP-containing neurons and receptors has been shown in the chicken. Recently, we have demonstrated that PACAP levels oscillate in a circadian manner in the chicken brain. Daily variation in PACAP levels might be influenced by several regulatory mechanisms. Among the structures that may regulate PACAP levels, one candidate is the pineal gland. Therefore, in the present study, we investigated the effect of pinealectomy on the levels of PACAP in the chicken brain. Animals were kept under 12:12-h light-dark schedule. Pinealectomy was performed at 3 weeks of age; sham-operated animals were used as controls. The animals were sacrificed at 15 and 24 h 1 week after pinealectomy. The brainstem and diencephalon were removed, and tissue samples were processed for PACAP and cAMP radioimmunoassay (RIA).PACAP and cAMP levels showed nighttime elevations in both the sham-operated and pinealectomized animals, except for the PACAP content in the diencephalon of pinealectomized chicken. PACAP levels of pinealectomized animals were significantly higher in the diencephalon and brainstem as compared to the control animals at both time-points. Levels of cAMP correlated well with levels of PACAP. The present results provide evidence that the pineal gland has an inhibitory impact on PACAP-neurons in the chicken brainstem and diencephalon.  相似文献   

2.
Pituitary adenylate cyclase activating polypeptide (PACAP) occurs in two molecular forms: PACAP-38 and PACAP-27. Soon after the isolation and chemical characterization of PACAP, the first radioimmunoassay (RIA) methods have been developed, but it is a still rarely used laboratory technique in the field of PACAP research. The aim of the present study was to develop a novel, highly specific PACAP-38 assay to investigate the quantitative distribution of PACAP-38 in the central nervous system of various vertebrate species under the same technical and experimental conditions. Different areas of the brain and the spinal cord were removed from rats, chickens and fishes and the tissue samples were processed for PACAP-38 RIA. Our results indicate that the antiserum used in the RIA is C-terminal specific, without affinity for other members of the vasoactive intestinal polypeptide (VIP)/secretin/glucagon peptide family. The average ID50 value was 48.6+/-3.4 fmol/ml determined in 10 consecutive assays. Detection limit for PACAP-38 proved to be 2 fmol/ml. PACAP-38 immunoreactivity was present in the examined brain areas of each species studied, with highest concentration in the rat diencephalons. High levels of PACAP-38 were also detected in the rat telencephalon, followed by spinal cord and brainstem. The central nervous system of the fish also contained considerable concentrations of PACAP-38, whereas lowest concentrations were measured in the central nervous system of the chicken.  相似文献   

3.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a regulatory neuropeptide which functions as a hypothalamic factor for pituitary hormone release, and as a neurotransmitter, neuromodulator and neurotrophic factor in both frogs and mammals. This study examined the quantitative distribution and chromatographic characterization of immunoreactive PACAP in the central nervous system (CNS) of the bullfrog, Rana catesbeiana, using an enzyme immunoassay (EIA), named avidin-biotin complex detectable EIA for PACAP, and high-performance liquid chromatographic (HPLC) analysis. The brain of adult bullfrogs contained relatively high levels of immunoreactive PACAP (344.63 pmol/g wet weight of tissue). The average concentrations of immunoreactive PACAP in the regions of the telencephalon, diencephalon, tectum, cerebellum, rhombencephalon, and spinal cord were 213.84, 767.14, 524.94, 192.71, 237.67, and 362.04 pmol/g wet weight of tissue, respectively. The concentrations of immunoreactive PACAP increased with the brain development during metamorphosis, and the concentration of immunoreactive PACAP in the brain of tadpoles at the end of metamorphosis was approximately 200 pmol/g wet weight of tissue. The predominant form of immunoreactive PACAP in the CNS of adult and tadpole was eluted closely with synthetic PACAP38, but another smaller immunoreactivity also appeared in a the fraction, which corresponded to the retention time of synthetic PACAP27, as analyzed by reverse-phase HPLC.  相似文献   

4.
Guanine deaminase was measured in nearly 100 different areas of mouse brain. The levels are relatively high in all parts of the telencephalon, both gray and white. It is especially active in parts of the olfactory tubercle and amygdala. Levels in the diencephalon range from low to as high as in the telencephalon. Brain areas caudal to the diencephalon, including all parts of the cerebellum, are almost uniformly below the level of detection. The enzyme is also virtually absent from the retina. The extreme range of concentration suggests that guanine deaminase might play a role in the metabolism of a neuroeffector.  相似文献   

5.
1. Endogenous serotonin (5-HT), 5-hydroxyindol acetic acid (5-HIAA) content and exogenous 5-HT uptake (Km and Vmax) were measured in different brain regions (cerebellum, diencephalon, brain stem and telencephalon) of rats fed with a corn diet and restricted protein (8%) diet during 6 weeks. 2. A reduction of 5-HT levels was found in all regions studied of animals fed a corn diet, whereas, 5-HIAA was only decreased in brain stem and diencephalon. 3. An important increase in Km and Vmax were registered in brain stem and diencephalon of protein restricted animals, whereas, an increase of 5-HT uptake affinity in cerebellum, brain stem and telencephalon (35, 42 and 33% respectively) was observed. Simultaneously, under corn diet conditions, the Vmax decreased 40, 30 and 34% respectively in those regions. 4. It is suggested that the brain stem was the more sensitive area under nutritional restricted conditions and the development of some possible compensatory mechanisms of the 5-HTergic system is discussed.  相似文献   

6.
Egr1 is a highly conserved zinc finger protein which plays important roles in many aspects of vertebrate development and in the adult. The cDNA coding for zebrafish Egr1 was obtained and its expression pattern was examined during zebrafish embryogenesis using whole-mount in situ hybridization. Egr1 mRNA is first detected in adaxial cells in the presomitic mesoderm between 11 and 20 h post-fertilization (hpf), spanning the 4-24 somite stages. Later, Egr1 expression is observed only in specific brain areas, starting at 21 hpf and subsequently increasing in distinct domains of the central nervous system, e.g. in the telencephalon, diencephalon and hypothalamus. Between 24 and 48 hpf, Egr1 is expressed in specific domains of the hypothalamus, mesencephalon, tegmentum, pharynx, retina, otic vesicle and heart.  相似文献   

7.
The distribution of pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP receptors in the brain of amphibians has been previously described. In the present study, we have investigated the ontogeny of the selective PACAP receptor, PAC1-R, and the PACAP-vasoactive intestinal polypeptide (VIP) mutual receptor, VPAC1-R, in frog embryos by whole-mount in situ hybridization histochemistry. At stage 20, expression of PAC1-R and/or VPAC1-R mRNAs was detected in the brain, the auditory vesicles, the external gills, the buds of the lateral lines and the coelomatic cavity. At stage 25, PAC1-R and/or VPAC1-R mRNAs were observed in the buds of the orbital lateral line, the pancreas and heart. At stage 30, PAC1-R and VPAC1-R mRNAs were widely distributed in the telencephalon and diencephalon as well as in the bud of the lateral line, the heart and the pancreas. The anatomical distribution of PAC1-R and VPAC1-R mRNAs, although similar, did not totally overlap, indicating that PACAP and VIP may exert differential effects in frog during development.  相似文献   

8.
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) could play a role in stimulating pituitary hormone release in fish brain. In this study, we used immunochemical techniques to examine the histological and quantitative distribution of PACAP in the central nervous system (CNS) of a teleost, the stargazer, Uranoscopus japonicus. In addition, high performance liquid chromatographic (HPLC) analysis was performed to characterize the form of PACAP present, while the relationship between PACAP and adenohypophysial hormones was also determined immunohistochemically. PACAP-like immunoreactive (LI) neuronal cell bodies and fibers were found not only in the hypothalamo-pituitary region but also in the midbrain and hindbrain regions. PACAP-LI fibers were identified in the neurohypophysis in close proximity to pituitary cells containing immunoreactive hormones such as somatolactin, the N-terminal peptide of proopiomelanocortin, and N-acetyl endorphin. The concentration of immunoreactive PACAP in whole brain tissue was approximately 300 pmol/g wet weight. The average concentrations of immunoreactive PACAP in regions of the telencephalon, diencephalon, tectum, cerebellum, and rhombencephalon were 217.53, 510.26, 83.30, 148.64, and 364.62 pmol/g, respectively. In reverse-phase HPLC experiments, the predominant form of immunoreactive PACAP eluted closely with synthetic stargazer PACAP38, while PACAP27-like immunoreactivity was negligible. These results suggest that PACAP38 is the predominant PACAP form in the stargazer CNS, and that PACAP acts not only as a hypophysiotropic factor for adenohypophysial hormone release but also as a neurotransmitter and neuromodulator in the CNS.  相似文献   

9.
Measurements of wet wt. and tetrodotoxin (TTX) binding have been made for various regions of chicken and mouse brain during development. The results in each case describe a sigmoid curve. In the chick all brain regions (telencephalon, optic tecta, cerebellum and brainstem) bind significant levels of TTX at hatching, but the brainstem is already at the adult level of binding. In the mouse only the brainstem binds measureable amounts of TTX at birth, indicating that it is the only brain region capable of generating sodium spikes in the newborn animal. Tetrodotoxin binding does not appear in the mouse cerebellum until after the first postnatal week, but subsequent to this time the development of TTX binding is more rapid in this structure than in any other.  相似文献   

10.
Abstract: The circadian rhythms in melatonin production in the chicken pineal gland and retina reflect changes in the activity of serotonin N -acetyltransferase (arylalkylamine N -acetyltransferase; AA-NAT; EC 2.3.1.87). Here we determined that the chicken AA-NAT mRNA is detectable in follicular pineal cells and retinal photoreceptors and that it exhibits a circadian rhythm, with peak levels at night. AA-NAT mRNA was not detected in other tissues. The AA-NAT mRNA rhythm in the pineal gland and retina persists in constant darkness (DD) and constant lighting (LL). The amplitude of the pineal mRNA rhythm is not decreased in LL. Light appears to influence the phase of the clock driving the rhythm in pineal AA-NAT mRNA in two ways: The peak is delayed by ∼6 h in LL, and it is advanced by >4 h by a 6-h light pulse late in subjective night in DD. Nocturnal AA-NAT mRNA levels do not change during a 20-min exposure to light, whereas this treatment dramatically decreases AA-NAT activity. These observations suggest that the rhythmic changes in chicken pineal AA-NAT activity reflect, at least in part, clock-generated changes in mRNA levels. In contrast, changes in mRNA content are not involved in the rapid light-induced decrease in AA-NAT activity.  相似文献   

11.
The anatomical distribution and seasonal variations in aromatase activity and in the number of aromatase-immunoreactive cells were studied in the brain of free-living male pied flycatchers (Ficedula hypoleuca). A high aromatase activity was detected in the telencephalon and diencephalon but low to negligible levels were present in the optic lobes, cerebellum, and brain stem. In the diencephalon, most aromatase-immunoreactive cells were confined to three nuclei implicated in the control of reproductive behaviors: the medial preoptic nucleus, the nucleus of the stria terminalis, and the ventromedial nucleus of the hypothalamus. In the telencephalon, the immunopositive cells were clustered in the medial part of the neostriatum and in the hippocampus as previously described in another songbird species, the zebra finch. No immunoreactive cells could be observed in the song control nuclei. A marked drop in aromatase activity was detected in the anterior and posterior diencephalon in the early summer when the behavior of the birds had switched from defending a territory to helping the female in feeding the nestlings. This enzymatic change is presumably controlled by the drop in plasma testosterone levels observed at that stage of the reproductive cycle. No change in enzyme activity, however, was seen at that time in other brain areas. The number of aromatase-immunoreactive cells also decreased at that time in the caudal part of the medial preoptic nucleus but not in the ventromedial nucleus of the hypothalamus (an increase was even observed), suggesting that differential mechanisms control the enzyme concentration and enzyme activity in the hypothalamus. Taken together, these data suggest that changes in diencephalic aromatase activity contribute to the control of seasonal variations in reproductive behavior of male pied flycatchers but the role of the telencephalic aromatase in the control of behavior remains unclear at present.  相似文献   

12.
The anatomical distribution of neurons containing galanin has been studied in the central nervous system of the chicken by means of immunocytochemistry using antisera against rat galanin. Major populations of immunostained perikarya were detected in several brain areas. The majority of galanin-immunoreactive cell bodies was present in the hypothalamus and in the caudal brainstem. Extensive groups of labeled perikarya were found in the paraventricular, periventricular, dorsomedial and tuberal hypothalamic nuclei, and in the nucleus of the solitary tract in the medulla oblongata. In the telencephalon, immunoreactive perikarya were observed in the preoptic area, in the lateral septal nucleus and in the hippocampus. The mesencephalon contained only a few galanin-positive perikarya located in the interpeduncular nucleus. Immunoreactive nerve fibers of varying density were detected in all subdivisions of the brain. Dense accumulations of galanin-positive fibers were seen in the preoptic area, periventricular region of the diencephalon, the ventral hypothalamus, the median eminence, the central gray of the brainstem, and the dorsomedial caudal medulla. The distributional pattern of galanin-immunoreactive neurons suggests a possible involvement of a galanin-like peptide in several neuroregulatory mechanisms.  相似文献   

13.
14.
The present study demonstrates that the biosynthesis of phospholipids in the inner nuclear layer cells of the chicken retina displays daily rhythms under constant illumination conditions. The vertebrate retina contains circadian oscillators and photoreceptors (PRCs) that temporally regulate its own physiology and synchronize the whole organism to the daily environmental changes. We have previously reported that chicken photoreceptors and retinal ganglion cells (RGCs) present significant daily variations in their phospholipid biosynthesis under constant illumination conditions. Herein, we demonstrate that cell preparations highly enriched in inner nuclear layer cells also exhibit a circadian-regulated phospholipid labeling after the in vivo administration of [(32)P]phosphate or [(3)H]glycerol both in animals maintained under constant darkness or light for at least 48h. In constant darkness, there was a significant incorporation of both precursors into phospholipids with the highest levels of labeling around midday and dusk. In constant light, the labeling of (32)P-phospholipids was also significantly higher during the day and early night whereas the incorporation of [(3)H]glycerol into phospholipids, that indicates de novo biosynthesis, was greater during the day but probably reflecting a higher precursor availability at those phases. We also measured the in vitro activity of phosphatidate phosphohydrolase and diacylglycerol lipase in preparations obtained from the dark condition. The two enzymes exhibited the highest activity levels late in the day. When we assessed the in vitro incorporation of [(14)C]oleate into different lysophospholipids from samples collected at different phases in constant darkness, reaction catalyzed by lysophospholipid acyltransferases II, labeling showed a complex pattern of daily activity. Taken together, these results demonstrate that the biosynthesis of phospholipids in cells of the chicken retinal inner nuclear layer exhibits a daily rhythmicity under constant illumination conditions, which is controlled by a circadian clock.  相似文献   

15.
The aim of this study was to compare the changes in amino acids (alanine, aspartate, GABA, glutamate, glutamine, glycine, serine taurine) that are produced in different regions of the neonate brain (telencephalon, diencephalon cerebellum, brain stem) following a survivable period of anoxia and after the re-establishment of air respiration. Anoxia provoked different responses in the different regions. The changes during the anoxic period were as follows. In the brain stem there was a decrease in aspartate, in the telencephalon there was a significant increase in GABA and alanine and a decrease in aspartate, in the diencephalon, glutamate and GABA increased, and in the cerebellum, glycine and alanine levels were enhanced. The changes during recovery were even more dissimilar. Here the greatest shifts were seen in the brain stem with increases in glutamine, GABA, aspartate, glycine, serine, alanine, and taurine. In the telencephalon glutamate fell and alanine increased, in the diencephalon GABA increased, and in the cerebellum, glutamate fell while glycine and alanine increased. In none of the major brain regions did the pattern of changes in neurotransmitters correspond to that seen in anoxic tolerant species.  相似文献   

16.
The aim of the study was to differentiate the impact of lighting conditions and feeding times on the regulation of lipid metabolism of goats under different photoperiods throughout the year. Seven Finnish landrace goats were kept under artificial lighting that simulated the annual changes of photoperiod at 60 degrees N (the longest light period 18 h, the shortest 6 h). Ambient temperature and feeding regime were kept constant. Blood samples were collected six times a year at 2-h intervals for 2 days, first in light/dark (LD) conditions and then after 3 days in constant darkness (DD). Significant daily variations were detected in the concentrations of plasma free fatty acids (FFA) and glycerol throughout the year. The nocturnal decrease and morning rise of FFA levels were related to the photoperiod, while the trough levels of glycerol were associated with the concentrate meal times. In DD conditions, FFA and glycerol rhythms were unstable. A significant seasonal variation was detected in the overall FFA and glycerol levels suggesting decreased lipogenesis in winter, increased lipolysis in spring and high lipogenesis in summer and fall. There was no significant daily rhythm in serum leptin levels, nor did the profiles in LD and DD conditions differ. The leptin level was slightly lower in early fall than in the other seasons, paralleling a small decrease of body mass in the goats after the grazing season. The daily or annual variations of FFA and glycerol levels were not clearly related to leptin concentrations. The results suggest that lipid metabolism of goats is regulated by light even in constant temperature and feeding conditions; however, no significant contribution of leptin levels could be shown.  相似文献   

17.
The distribution of FMRFamide-like-immunoreactive peptides was investigated in the brain and pituitary of the elasmobranch fish Scyliorhinus canicula using the indirect immunofluorescence technique. FMRFamide-immunoreactive cells and fibers were mainly observed in the telencephalon and the diencephalon, while other brain structures were almost unstained. In the telencephalon, FMRFamide-like-containing neurons were seen in the caudal part of the area periventricularis pallialis, in the posterior area of the nucleus septi medialis and in the nucleus septi caudoventralis. In the diencephalon, numerous FMRFamide-positive cell bodies were observed in the hypothalamus, ventral thalamus and posterior tuberculum. The highest density of immunofluorescent perikarya was found in the nucleus lobi lateralis hypothalami and in the nucleus periventricularis hypothalami. More caudally, the mesencephalon and the caudal brainstem only contained scattered varicose FMRFamide-immunoreactive fibers. Stained fibers were also identified in the median eminence and several FMRFamide-like-positive cells were detected in the dorsal and rostral parts of the neurointermediate lobe of the pituitary. These data indicate that substances related to the molluscan cardioexcitatory peptide FMRFamide are widely distributed in the brain of S. canicula, suggesting their implication in neuroendocrine and/or neuromodulatory functions.  相似文献   

18.
Adult crickets (Gryllus bimaculatus) were maintained under a 12-h light:12-h dark cycle (LD 12:12). After oviposition, their eggs were incubated under different lighting regimens at 23 degrees C, and temporal profiles of egg hatching were examined. When the eggs were incubated in LD 12:12 or in DL 12:12 with a phase difference of 12h from LD 12:12, throughout embryogenesis, 88% to 97% of hatching occurred within 3 h of the dark-light transition on days 17 and 18 of embryogenesis; the phases of the egg-hatching rhythms in the LD 12:12 and DL 12:12 groups differed by about 12 h. In eggs incubated in constant darkness (DD) throughout embryogenesis, a circadian (about 24 h) rhythm of hatching was found, and the phase of the rhythm was similar to that seen in eggs incubated in LD 12:12, but not DL 12:12, throughout embryogenesis. When eggs that had been incubated in DD after oviposition were transferred to DL 12:12 in the middle or later stages of embryogenesis and were returned to DD after three cycles of DL 12:12, the rhythm of hatching synchronized (entrained) to DL 12:12. However, when eggs in the earlier stages of embryogenesis were transferred from DD to DL 12:12 and returned to DD after three cycles, 52% to 94% of hatching did not entrain to DL 12:12. To determine whether photoperiodic conditions to which the parents had been exposed influenced the timing of egg hatching, adult crickets were maintained in DL 12:12, and their eggs were incubated in LD 12:12, DL 12:12, or DD throughout embryogenesis. The egg-hatching rhythm was also found in the eggs incubated under these three lighting regimens. In DD, the phase of the rhythm was similar to that seen in eggs incubated in DL 12:12, not LD 12:12, throughout embryogenesis. The results indicate that in the cricket, the timing of egg hatching is under circadian control and that the circadian rhythm of hatching entrains to 24-h light:dark cycles, but only if the light:dark cycles are imposed midway through embryogenesis. Therefore, by midembryogenesis, a circadian clock has been formed in the cricket, and this is entrainable to light:dark cycles. In addition, the photoperiodic conditions to which the parents (probably the mothers) have been exposed influence the timing of hatching, suggesting that maternal factors may regulate the timing of egg hatching.  相似文献   

19.
20.
We have examined neuronal differentiation and the formation of axon tracts in the embryonic forebrain and midbrain of the zebrafish, between 1 and 2 days postfertilisation. Axons were visualised with three techniques; immunocytochemistry (using HNK-1 and antiacetylated tubulin antibodies) and horseradish peroxidase (HRP) labelling in whole-mounted brains, and transmission electron microscopy. Differentiation was monitored by histochemical staining for acetylcholinesterase (AChE). These independent methods demonstrated that a simple grid of tracts and commissures forms the initial axon scaffold of the brain. At 1 day, the olfactory nerve, four commissures, their associated tracts and three other non-commissural tracts are present. By 2 days, these tracts and commissures have all greatly enlarged and, in addition, the optic nerve and tract, and three new commissures and their associated tracts have been added. Small applications of HRP at various sites revealed the origins and projections of some of these earliest axons. Retrogradely labelled cell bodies originated from regions that were also positive for AChE activity. At 1 day, HRP-labelled axons were traced: (1) from the olfactory placode through the olfactory nerve to the dorsal telencephalon; (2) from the telencephalon into the tract of the anterior commissure and also to the postoptic region of the diencephalon; (3) from the hindbrain through the ventral midbrain and diencephalon to the postoptic commissure; (4) from the dorsal diencephalon (in or near the epiphysis) to the tract of the postoptic commissure; (5) from ventral and rostral midbrain through the posterior commissure. Three new projections were demonstrated at 2 days: (1) from the retina through the tract of the postoptic commissure to the tectum; (2) from the telencephalon to the contralateral diencephalon; and (3) from the telencephalon to the ventral flexure. These results show that at 1 day, the zebrafish brain is impressively simple, with a few small, well-separated tracts but by 2 days the brain is already considerably more complex. Most of the additional axons added onto pre-existent tracts rather than pioneered new ones supporting the notion that other axons play a crucial role in the guidance of early central nervous system (CNS) axons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号