首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
长期大量实践说明,引进天敌防治外来入侵杂草的传统生物防治方法是治理外来入侵杂草的一条切实可行的有效途径,但对其潜在的生态风险——对本土生物的直接或间接不良影响不容忽视。利用传统评价方法预测候选天敌的生态风险存在缺陷,主要表现在:(1)寄主专一性测定过分依赖室内进行的生理寄主范围测定结果,对生态寄主范围(实际寄主范围)问题重视不够,后者指在新环境中的一系列物理和生物条件下的寄主利用预测;(2)在生理寄主范围测定中,过分依赖完成生长发育的可能性,对行为、遗传性状以及系统发育关系重视不够;(3)在风险评估中,过多强调对经济作物的风险,而对自然生态系统的风险重视不够。对此,建议:(1)鼓励对已释放的天敌进行回顾性跟踪研究,从而为杂草生物防治实践提供生态学理论支撑;(2)在运用生物防治手段对付外来入侵杂草实践中,建议采用“有害推论”的预防性原则,以避免在面临入侵生物重大威胁时草率做出释放天敌的决策;(3)在评估候选天敌风险中重视生态效应的风险评估。  相似文献   

2.
Considerable progress has been made towards the successful classical biological control of many of Australia’s exotic weeds over the past decade. Some 43 new arthropod or pathogen agents were released in 19 projects. Effective biological control was achieved in several projects with the outstanding successes being the control of rubber vine, Cryptostegia grandiflora, and bridal creeper, Asparagus asparagoides. Significant developments also occurred in target prioritization, procedures for target and agent approval, funding, infrastructure and cooperation between agencies. Scientific developments included greater emphasis on climate matching, plant and agent phylogeny, molecular diagnostics, agent prioritization and agent evaluation.  相似文献   

3.
A retrospective analysis shows that invasive, alien, free-floating and emergent aquatic weeds in Europe are good targets for classical biological control, and that genus-specific chrysomelid and curculionid beetles offer the most potential. Ludwigia spp., Azolla filiculoides, Lemna minuta, Crassula helmsii and Hydrocotyle ranunculoides should be prioritised as targets. Fungal pathogens have been under-utilised as classical agents but, whilst they may have some potential against free-floating weeds, they appear to be poor candidates against submerged species, although the suitability of arthropod agents against these difficult targets still merits investigation. The use of indigenous pathogens as inundative agents (mycoherbicides) shows some promise.  相似文献   

4.
5.
Jane Barton 《BioControl》2012,57(2):289-305
Before an exotic pathogen can be released as a classical biological control agent the likely positive and negative outcomes of that introduction must be predicted. Host range testing is used to assess potential damage to non-target plants. To-date 28 species of fungi have been released as classical biological control agents against weeds world-wide. These pathogens have been reported infecting only six non-target plant species outdoors and all of these incidents were predicted. Many more non-target plant species developed disease symptoms in glasshouse tests than in the field. Consequently, data from other sources are needed to ensure potential agents are not prematurely rejected. Predictions of pathogen host range to date have been sufficiently accurate to prevent unpleasant surprises. Exotic pathogens are a safe and useful tool for weed control, especially in natural areas rich in valued non-target species.  相似文献   

6.
Lynn M. Lebeck 《BioControl》1991,36(3):335-352
The biology and control potential of hymenopterous natural enemies of cockroaches in the familiesAmpulicidae, Evaniidae, Pteromalidae, Eulophidae, Eupelmidae, andEncyrtidae were reviewed. Emphasis was placed on parasitoids of major domiciliary cockroach species, especially those that have had experimental usage in integrated pest management programs. The most promising parasitoids wereAprostocetus hagenowii (Ratzeburg) againstPeriplaneta species, andComperia merceti (Compere) againstSupella longipalpa (F.). Future research should focus on practical augmentation techniques that will be compatible with other control methodologies in the urban environment.   相似文献   

7.
Current challenges to the implementation of classical biological control   总被引:1,自引:0,他引:1  
Biological control is considered by many applied ecologists and pest management specialists to be among the safest, most environmentally benign, and most cost-effective methods of pest control available. Yet the practical implementation of projects, especially for classical biocontrol, is replete with challenges large and small; some long standing, and others relatively new. Here we review some of the most pressing current challenges, and provide some background about their foundation and derivation. A common thread that runs throughout this summary is that public education and public support for biological control technology is critical for maintaining the economic, regulatory, and logistical feasibility of this most effective tool for pest management.  相似文献   

8.
Shifting paradigms in the history of classical biological control   总被引:1,自引:0,他引:1  
Classical biological control using insects has led to the partial or complete control of at least 226 invasive insect and 57 invasive weed species worldwide since 1888. However, at least ten introductions of biological control agents have led to unintended negative consequences and these cases have led to a focus on risk that came to dominate the science and practice of classical biological control by the 1990s. Based upon historical developments in the field we consider that the era of focus on benefits began in 1888 and that it was supplanted by an era in which the focus was on risks during the 1990s. This paradigm shift greatly improved the safety of biological control releases but also led to a decline in the number of introductions, probably resulting in opportunity costs. We note here the development of a third paradigm: one in which the benefits and risks of biological control are clearly and explicitly balanced so that decisions can be made that maximize benefits while minimizing risks.  相似文献   

9.
AIMS: Deleterious rhizosphere inhabiting bacteria (DRB) have potential to suppress plant growth. This project focuses on the isolation of DRB with potential for development as commercial products for weed control. METHODS AND RESULTS: Bacteria were isolated from the rhizosphere, rhizoplane, and endorhizosphere of seedlings and mature plants of wild radish (Raphanus raphanistrum), annual ryegrass (Lolium rigidum) and capeweed (Arctotheca calendula) growing in vineyards in the Swan Valley, Western Australia. A majority (81.5%) of the 442 strains was obtained from either rhizospheres or rhizoplanes. Rapid screening techniques were developed to evaluate in the laboratory and glasshouse the effects of bacteria on plants. Strains were screened in the glasshouse for deleterious effects on annual ryegrass, wild radish, grapevine rootlings (Vitis vinifera) and the legume cover crop subterranean clover (Trifolium subterraneum). Three strains were identified using the Biolog system and 16S rRNA gene sequencing as two strains of Pseudomonas fluorescens (WSM3455 and WSM3456) and one strain of Alcaligenes xylosoxidans (WSM3457). One of the P. fluorescens (WSM3455) strain produced hydrogen cyanide, an inhibitor of plant roots and a broad-spectrum antimicrobial compound. CONCLUSIONS: Three strains specifically inhibited wild radish but had no significant deleterious effects on either grapevine rootlings or subterranean clover. SIGNIFICANCE AND IMPACT OF THE STUDY: This study suggested manipulation of the weed seedling rhizosphere using identified DRB as a potential biocontrol agent for wild radish.  相似文献   

10.
11.
12.
13.
The red spider mite Tetranychus evansi Baker and Pritchard is a pest of tomato in East and Southern Africa. It is probably native to South America. Three models were established to identify priority areas for the search of natural enemies in South America for classical biological control of this pest in Africa. The models were based on the concept of “fundamental ecological niche”, predicting regions in South America that have similar environmental conditions to areas where the mite is a problem in Africa, using Desktop-GARP (Genetic Algorithm for Rule-set Production). Based on the model established with data sets from Kenya and Zimbabwe, it was determined that priority areas include areas in Brazil, Argentina, Paraguay and Uruguay, as well as some restricted areas in other South American countries.  相似文献   

14.
Importations of biological control agents for insect pests and weeds in New Zealand are summarized and factors contributing to the relative success of the programmes are examined. The establishment rate of 30.9% is similar to that achieved worldwide, but is significantly lower than the rate achieved in the island habitat of Hawaii. The pioneering role of New Zealand in biological control is shown by the high proportion of programmes first attempted in this country. Although this novelty has not reduced the establishment rate, introductions against endemic species have not succeeded. Size of release was not a dominant feature in the establishment of agents. Complete or substantial success is recorded for 17 of the 70 target pests, with a relatively high success rate in forestry programmes. Examples of the influence of climate matching and competitive exclusion are also discussed. Changing practices and attitudes to the introduction of biological control agents are documented to show the increasing emphasis on specialists. No adverse effects of introductions are reported. The challenge to practitioners and regulators is to develop systems to evaluate conflicts of interest and develop workable mechanisms to determine which biological control agents are suitable for release.  相似文献   

15.
16.
China has become one of the countries most seriously affected by invasive alien weeds in the world. Weeds impact agriculture, the environment and human health, and conventional control methods such as herbicides are expensive, damaging to human health and unsustainable. As the impacts and costs of weed control in China increase, there is an urgent need to manage some of the more important weeds through more sustainable methods. Classical biological control of invasive alien weeds is environmentally-friendly and sustainable. Biological control in China began in the 1930s with the introduction of two agents into Hong Kong for the control of Lantana camara. Since then, a further seven biological control agents have been introduced into China to control four weed species. In addition, 11 biological control agents targeting seven weed species have naturally spread into China. Together, these biological control agents are helping to control some of China's worst weeds. However, these efforts are only a small portion of the weeds that could be targeted for weed biological control. This paper reviews the current status of weed biological control efforts against introduced weeds in ten provinces and regions in southern China and provides a platform to identify the most effective and appropriate weed biological control opportunities and programmes to pursue in the future. Introducing additional safe and effective biological control agents into China to help manage some of the worst weeds in the region should reduce the use of herbicides and impacts on human health and the environment, while increasing productivity and food security.  相似文献   

17.
The overall impact of the parasitoid Sphecophaga vesparum vesparum on invasive Vespula wasps in New Zealand native beech forest was evaluated by assessing the levels of parasitism achieved and the parasitoid’s effect at nest level and population level. The maximum proportion of nests parasitised was 17%, but there was no significant increase with time (r= 0.139; p = 0.115). However, there was an exponential reduction in the number of parasitoids produced per parasitised nest from a peak of 570 (SE = 143) parasitoids per nest in 1990, declining to only 15 (SE = 6) parasitoids per nest in 2004. Even when parasitoid density was high, the parasitoid had no detectable impact on the number of small cells or the total host nest size, but it halved the number of large (reproductive) cells produced. This may have resulted in fewer queens produced per parasitised nest. Wasp nest density was highly variable from year to year, but there was no evidence that the wasp population density at the parasitised site (Pelorus Bridge) had declined relative to the five sites where the parasitoid had not established. We conclude that the parasitoid is unlikely to have had any significant effect on wasp populations hitherto, nor is it likely to impact host populations in the future. We recommend other biological control programs adopt pre-release assessment of per capita impact as a way of identifying agents that are more likely to be successful and hence minimising economic and potential ecological costs of biocontrol.  相似文献   

18.
19.
Biological Invasions - Invasive species hinder the conservation objectives of natural protected areas, particularly of those found within or nearby urban settlements. Identifying the habitat and...  相似文献   

20.
1 Although the weaver ant Oecophylla is the first written record of biological control, dating from 304 ad , there have been fewer than 70 scientific publications on this predator as a biological control agent in Asia, from the early 1970s onwards, and fewer than 25 in Africa. 2 Apart from crop‐specific ecological and perceptual factors, a historical review shows that political and market forces have also determined the extent to which Oecophylla was incorporated into research and development programmes. 3 In Africa, research on weaver ants in biological control concentrated on export crops, such as coconut and cocoa, whereas, in Asia and Australia, research focused on fruit and nut crops, primarily destined for domestic markets. 4 Increased evidence of pesticide inefficiency under tropical smallholder conditions, changing paradigm shifts in participatory research and a growing scientific interest in local knowledge in the early 1990s opened up new avenues for research on conservation biological control. 5 Lobbying and advocacy have been needed to ensure that Oecophylla was recognized as an effective biological control agent. 6 With an increased market demand for organic produce, holistic approaches such as conservation biological control, particularly the use of Oecophylla, are increasing in importance. 7 Multi‐stakeholder strategies for collaborative learning are proposed for a better control of major fruit, nut and timber tree pests in Africa, Asia and Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号