首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental DNA (eDNA)-based methods of species detection are enabling various applications in ecology and conservation including large-scale biomonitoring efforts. qPCR is widely used as the standard approach for species-specific detection, often targeting a fish species of interest from aquatic eDNA. However, DNA metabarcoding has the potential to displace qPCR in certain eDNA applications. In this study, we compare the sensitivity of the latest Illumina NovaSeq 6000 NGS platform to qPCR TaqMan assays by measuring limits of detection and by analysing eDNA from water samples collected from Churchill River and Lake Melville, NL, Canada. Species-specific, targeted next generation sequencing (NGS) assays had significantly higher sensitivity than qPCR, with limits of detection 14- to 29-fold lower. For example, when analysing eDNA, qPCR detected Gadus ogac (Greenland cod) in 21% of samples, but targeted NGS detected this species in 29% of samples. General NGS assays were as sensitive as qPCR, while simultaneously detecting 15 fish species from eDNA samples. With over 34,000 fish species on the planet, parallel and sensitive methods such as NGS will be required to support effective biomonitoring at both regional and global scales.  相似文献   

2.
Indirect, non-invasive detection of rare aquatic macrofauna using aqueous environmental DNA (eDNA) is a relatively new approach to population and biodiversity monitoring. As such, the sensitivity of monitoring results to different methods of eDNA capture, extraction, and detection is being investigated in many ecosystems and species. One of the first and largest conservation programs with eDNA-based monitoring as a central instrument focuses on Asian bigheaded carp (Hypophthalmichthys spp.), an invasive fish spreading toward the Laurentian Great Lakes. However, the standard eDNA methods of this program have not advanced since their development in 2010. We developed new, quantitative, and more cost-effective methods and tested them against the standard protocols. In laboratory testing, our new quantitative PCR (qPCR) assay for bigheaded carp eDNA was one to two orders of magnitude more sensitive than the existing endpoint PCR assays. When applied to eDNA samples from an experimental pond containing bigheaded carp, the qPCR assay produced a detection probability of 94.8% compared to 4.2% for the endpoint PCR assays. Also, the eDNA capture and extraction method we adapted from aquatic microbiology yielded five times more bigheaded carp eDNA from the experimental pond than the standard method, at a per sample cost over forty times lower. Our new, more sensitive assay provides a quantitative tool for eDNA-based monitoring of bigheaded carp, and the higher-yielding eDNA capture and extraction method we describe can be used for eDNA-based monitoring of any aquatic species.  相似文献   

3.
Environmental DNA (eDNA) is a powerful method for assessing the presence and distribution of invasive aquatic species. We used this tool to detect and monitor several invasive crayfishes Procambarus clarkii, Orconectes limosus and Pacifastacus leniusculus present in, or likely to invade, the ponds of the Brenne Regional Natural Park. A previous study showed that the eDNA method was not very efficient in detecting P. clarkii. In the present study, we explored new improvements in the detection of invasive crayfish. We designed specific primers for each crayfish species, and set up an experimental mesocosm approach to confirm the specificity of the primers and the sampling protocol. We analysed samples taken from ponds in 2014 and 2015. We compared two qPCR protocols involving either SybrGreen or TaqMan assays. Using these same primers, we were able to detect crayfish eDNA with both assays during the mesocosm experiment. However, crayfish from field samples could only be detected by performing qPCR with a SybrGreen assay. We successfully monitored the presence of three invasive species of crayfish using eDNA. This method is a powerful tool for establishing the presence or absence of invasive species in various freshwater environments.  相似文献   

4.
Environmental DNA (eDNA) is being rapidly adopted as a tool to detect rare animals. Quantitative PCR (qPCR) using probe-based chemistries may represent a particularly powerful tool because of the method’s sensitivity, specificity, and potential to quantify target DNA. However, there has been little work understanding the performance of these assays in the presence of closely related, sympatric taxa. If related species cause any cross-amplification or interference, false positives and negatives may be generated. These errors can be disastrous if false positives lead to overestimate the abundance of an endangered species or if false negatives prevent detection of an invasive species. In this study we test factors that influence the specificity and sensitivity of TaqMan MGB assays using co-occurring, closely related brook trout (Salvelinus fontinalis) and bull trout (S. confluentus) as a case study. We found qPCR to be substantially more sensitive than traditional PCR, with a high probability of detection at concentrations as low as 0.5 target copies/µl. We also found that number and placement of base pair mismatches between the Taqman MGB assay and non-target templates was important to target specificity, and that specificity was most influenced by base pair mismatches in the primers, rather than in the probe. We found that insufficient specificity can result in both false positive and false negative results, particularly in the presence of abundant related species. Our results highlight the utility of qPCR as a highly sensitive eDNA tool, and underscore the importance of careful assay design.  相似文献   

5.
Environmental DNA (eDNA) methods are used to detect DNA that is shed into the aquatic environment by cryptic or low density species. Applied in eDNA studies, occupancy models can be used to estimate occurrence and detection probabilities and thereby account for imperfect detection. However, occupancy terminology has been applied inconsistently in eDNA studies, and many have calculated occurrence probabilities while not considering the effects of imperfect detection. Low detection of invasive giant constrictors using visual surveys and traps has hampered the estimation of occupancy and detection estimates needed for population management in southern Florida, USA. Giant constrictor snakes pose a threat to native species and the ecological restoration of the Florida Everglades. To assist with detection, we developed species-specific eDNA assays using quantitative PCR (qPCR) for the Burmese python (Python molurus bivittatus), Northern African python (P. sebae), boa constrictor (Boa constrictor), and the green (Eunectes murinus) and yellow anaconda (E. notaeus). Burmese pythons, Northern African pythons, and boa constrictors are established and reproducing, while the green and yellow anaconda have the potential to become established. We validated the python and boa constrictor assays using laboratory trials and tested all species in 21 field locations distributed in eight southern Florida regions. Burmese python eDNA was detected in 37 of 63 field sampling events; however, the other species were not detected. Although eDNA was heterogeneously distributed in the environment, occupancy models were able to provide the first estimates of detection probabilities, which were greater than 91%. Burmese python eDNA was detected along the leading northern edge of the known population boundary. The development of informative detection tools and eDNA occupancy models can improve conservation efforts in southern Florida and support more extensive studies of invasive constrictors. Generic sampling design and terminology are proposed to standardize and clarify interpretations of eDNA-based occupancy models.  相似文献   

6.
Environmental DNA (eDNA) analysis is a rapid, cost‐effective, non‐invasive biodiversity monitoring tool which utilises DNA left behind in the environment by organisms for species detection. The method is used as a species‐specific survey tool for rare or invasive species across a broad range of ecosystems. Recently, eDNA and “metabarcoding” have been combined to describe whole communities rather than focusing on single target species. However, whether metabarcoding is as sensitive as targeted approaches for rare species detection remains to be evaluated. The great crested newt Triturus cristatus is a flagship pond species of international conservation concern and the first UK species to be routinely monitored using eDNA. We evaluate whether eDNA metabarcoding has comparable sensitivity to targeted real‐time quantitative PCR (qPCR) for T. cristatus detection. Extracted eDNA samples (N = 532) were screened for T. cristatus by qPCR and analysed for all vertebrate species using high‐throughput sequencing technology. With qPCR and a detection threshold of 1 of 12 positive qPCR replicates, newts were detected in 50% of ponds. Detection decreased to 32% when the threshold was increased to 4 of 12 positive qPCR replicates. With metabarcoding, newts were detected in 34% of ponds without a detection threshold, and in 28% of ponds when a threshold (0.028%) was applied. Therefore, qPCR provided greater detection than metabarcoding but metabarcoding detection with no threshold was equivalent to qPCR with a stringent detection threshold. The proportion of T. cristatus sequences in each sample was positively associated with the number of positive qPCR replicates (qPCR score) suggesting eDNA metabarcoding may be indicative of eDNA concentration. eDNA metabarcoding holds enormous potential for holistic biodiversity assessment and routine freshwater monitoring. We advocate this community approach to freshwater monitoring to guide management and conservation, whereby entire communities can be initially surveyed to best inform use of funding and time for species‐specific surveys.  相似文献   

7.
Environmental DNA (eDNA) sampling, the detection of species‐specific genetic material in water samples, is an emerging tool for monitoring aquatic invasive species. Optimizing eDNA sampling protocols can be challenging because there is imperfect understanding of how each step of the protocol influences its sensitivity. This paper develops a probabilistic model that characterizes each step of an eDNA sampling protocol to evaluate the protocol's overall detection sensitivity for one sample. The model is then applied to analyse how changes over time made to the eDNA sampling protocol to detect bighead (BH) and silver carp (SC) eDNA have influenced its sensitivity, and hence interpretation of the results. The model shows that changes to the protocol have caused the sensitivity of the protocol to fluctuate. A more efficient extraction method in 2013, new species‐specific markers with a qPCR assay in 2014, and a more efficient capture method in 2015 have improved the sensitivity, while switching to a larger elution volume in 2013 and a smaller sample volume in 2015 have reduced the sensitivity. Overall, the sensitivity of the current protocol is higher for BH eDNA detection and SC eDNA detection compared to the original protocol used from 2009 to 2012. The paper shows how this model of eDNA sampling can be used to evaluate the effect of proposed changes in an eDNA sampling and analysis protocol on the sensitivity of that protocol to help researchers optimize their design.  相似文献   

8.
Environmental DNA (eDNA) sampling—the detection of intra- or extra-cellular DNA in environmental samples—is a rapid and sensitive survey method for detecting aquatic species. Single-species detection methods (typically based on PCR or LAMP) have been shown to be more sensitive for detecting target species than multi-species detection methods, such as metabarcoding. However, previous studies have generally only compared these two eDNA detection approaches for a single target species and have used different methodological and statistical approaches. Here we present a comparison of single- and multi-species eDNA detection methods, drawing on two published case studies (one fish, one amphibian) and two new extensive datasets on a freshwater mammal (the platypus). To ensure consistent conclusions regarding the sensitivity of each eDNA method, we use the same hierarchical site occupancy-detection model for each dataset, incorporating uncertainty at the site, water sample, and technical replicate level. Overall, qPCR achieved higher detection probabilities than metabarcoding across species and datasets. However, differences in sensitivity between detection methods varied depending on methodological decisions concerning what constitutes a true positive detection (i.e., qPCR and metabarcoding thresholds). The decision as to which eDNA detection method to use should always be influenced by the study aims, but our results suggest that single-species detection methods based on qPCR may be preferable when the aim is to achieve a high detection probability for target species.  相似文献   

9.
Environmental stewardship requires timely, accurate information related to the status of a given ecosystem and the species that occupy it. Recent advances in the application of the highly sensitive real-time quantitative polymerase chain reaction (qPCR) towards identification of constituents within environmental DNA (eDNA) now allow targeted detection of the presence of species-specific biological material within a localized geographic region. However, as with all molecular techniques predicated on the specificity and sensitivity of the PCR assay, careful validation of each eDNA qPCR assay in development must be performed both under controlled laboratory conditions and when challenged with field-derived eDNA samples. Such a step-wise approach forms the basis for incorporation of innovative qPCR design features that strengthen the implementation and interpretation of the eDNA assay. This includes empirical determination that the qPCR assay is refractory to the presence of human DNA and the use of a tripartite assay approach comprised of 1) a primer set targeting plant chloroplast that evaluates the presence of amplifiable DNA from field samples to increase confidence in a negative result, 2) an animal group primer set to increase confidence in the assay result, and 3) a species-specific primer set to assess presence of DNA from the target species. To demonstrate this methodology, we generated eDNA assays specific for the North American bullfrog (Lithobates (Rana) catesbeiana) and the Rocky Mountain tailed frog (Ascaphus montanus) and characterized each with respect to detection sensitivity and specificity with demonstrated performance in a field survey scenario. The qPCR design features presented herein address specific challenges of eDNA assays thereby increasing their interpretative power.  相似文献   

10.
Aquatic invasive plant species cause negative impacts to economies and ecosystems worldwide. Traditional survey methods, while necessary, often do not result in timely detections of aquatic invaders, which can be cryptic, difficult to identify, and exhibit very rapid growth and reproduction rates. Environmental DNA (eDNA) is a relatively new method that has been used to detect multiple types of animals in freshwater and marine ecosystems through tissues naturally shed from the organism into the water column or sediment. While eDNA detection has proven highly effective in the detection of aquatic animals, we know less about the efficacy of eDNA as an effective surveillance tool for aquatic plants. To address this disparity, we designed mesocosm experiments with Elodea species to determine the ability to detect accumulation and degradation of the DNA signal for aquatic plants, followed by field surveillance of the highly invasive Hydrilla verticillata in freshwaters across several U.S. geographic regions. In both lab and field experiments, we designed a high sensitivity quantitative PCR assay to detect the aquatic plant species. In both experiments, plant eDNA detection was successful; we saw accumulation of DNA when plants were introduced to tanks and a decrease in DNA over time after plants were removed. We detected eDNA in the field in areas of known Hydrilla distribution. Employing eDNA detection for aquatic plants will strengthen efforts for early detection and rapid response of invaders in global freshwater ecosystems.  相似文献   

11.
Invasive Asian bighead and silver carp (Hypophthalmichthys nobilis and H. molitrix) pose a substantial threat to North American aquatic ecosystems. Recently, environmental DNA (eDNA), genetic material shed by organisms into their environment that can be detected by non-invasive sampling strategies and genetic assays, has gained recognition as a tool for tracking the invasion front of these species toward the Great Lakes. The goal of this study was to develop new species-specific conventional PCR (cPCR) and quantitative (qPCR) markers for detection of these species in North American surface waters. We first generated complete mitochondrial genome sequences from 33 bighead and 29 silver carp individuals collected throughout their introduced range. These sequences were aligned with those from other common and closely related fish species from the Illinois River watershed to identify and design new species-specific markers for the detection of bighead and silver carp DNA in environmental water samples. We then tested these genetic markers in the laboratory for species-specificity and sensitivity. Newly developed markers performed well in field trials, did not have any false positive detections, and many markers had much higher detection rates and sensitivity compared to the markers currently used in eDNA surveillance programs. We also explored the use of multiple genetic markers to determine whether it would improve detection rates, results of which showed that using multiple highly sensitive markers should maximize detection rates in environmental samples. The new markers developed in this study greatly expand the number of species-specific genetic markers available to track the invasion front of bighead and silver carp and will improve the resolution of these assays. Additionally, the use of the qPCR markers developed in this study may reduce sample processing time and cost of eDNA monitoring for these species.  相似文献   

12.
An environmental DNA (eDNA) analysis method has been recently developed to estimate the distribution of aquatic animals by quantifying the number of target DNA copies with quantitative real-time PCR (qPCR). A new quantitative PCR technology, droplet digital PCR (ddPCR), partitions PCR reactions into thousands of droplets and detects the amplification in each droplet, thereby allowing direct quantification of target DNA. We evaluated the quantification accuracy of qPCR and ddPCR to estimate species abundance and biomass by using eDNA in mesocosm experiments involving different numbers of common carp. We found that ddPCR quantified the concentration of carp eDNA along with carp abundance and biomass more accurately than qPCR, especially at low eDNA concentrations. In addition, errors in the analysis were smaller in ddPCR than in qPCR. Thus, ddPCR is better suited to measure eDNA concentration in water, and it provides more accurate results for the abundance and biomass of the target species than qPCR. We also found that the relationship between carp abundance and eDNA concentration was stronger than that between biomass and eDNA by using both ddPCR and qPCR; this suggests that abundance can be better estimated by the analysis of eDNA for species with fewer variations in body mass.  相似文献   

13.
Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA) has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus). We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.  相似文献   

14.
Environmental DNA (eDNA) sampling is a powerful tool for detecting invasive and native aquatic species. Often, species of conservation interest co-occur with other, closely related taxa. Here, we developed qPCR (quantitative PCR) markers which distinguish westslope cutthroat trout (Oncorhynchus clarkii lewsi), Yellowstone cutthroat trout (O. clarkii bouvieri), and rainbow trout (O. mykiss), which are of conservation interest both as native species and as invasive species across each other’s native ranges. We found that local polymorphisms within westslope cutthroat trout and rainbow trout posed a challenge to designing assays that are generally applicable across the range of these widely-distributed species. Further, poorly-resolved taxonomies of Yellowstone cutthroat trout and Bonneville cutthroat trout (O. c. utah) prevented design of an assay that distinguishes these recognized taxa. The issues of intraspecific polymorphism and unresolved taxonomy for eDNA assay design addressed in this study are likely to be general problems for closely-related taxa. Prior to field application, we recommend that future studies sample populations and test assays more broadly than has been typical of published eDNA assays to date.  相似文献   

15.
Detection of invasive species before or soon after they establish in novel environments is critical to prevent widespread ecological and economic impacts. Environmental DNA (eDNA) surveillance and monitoring is an approach to improve early detection efforts. Here we describe a large-scale conservation application of a quantitative polymerase chain reaction assay with a case study for surveillance of a federally listed nuisance species (Ruffe, Gymnocephalus cernua) in the Laurentian Great Lakes. Using current Ruffe distribution data and predictions of future Ruffe spread derived from a recently developed model of ballast-mediated dispersal in US waters of the Great Lakes, we designed an eDNA surveillance study to target Ruffe at the putative leading edge of the invasion. We report a much more advanced invasion front for Ruffe than has been indicated by conventional surveillance methods and we quantify rates of false negative detections (i.e. failure to detect DNA when it is present in a sample). Our results highlight the important role of eDNA surveillance as a sensitive tool to improve early detection efforts for aquatic invasive species and draw attention to the need for an improved understanding of detection errors. Based on axes that reflect the weight of eDNA evidence of species presence and the likelihood of secondary spread, we suggest a two-dimensional conceptual model that management agencies might find useful in considering responses to eDNA detections.  相似文献   

16.
The international trade in ornamental aquatic organisms represents an important vector in the spread of invasive species worldwide, but the accurate identification of imported organisms as part of a biosecurity surveillance program offers an opportunity to mitigate potential problems. Species level identification is historically conducted visually, and more recently, with the use of DNA barcoding. However, new diagnostic methods targeting extracellular environmental DNA (eDNA) can offer advantages over these approaches, being non-destructive and potentially more sensitive at low population densities of target organisms (e.g. in mixed consignments). Despite their recent introduction, techniques utilising eDNA are quickly becoming recognised as an important tool for invasion biologists and ecosystem managers. Here, we present a model for the development of a biosecurity protocol for ornamental fish identification using degraded eDNA molecules in water. We demonstrate how a DNA barcode reference library can be mined for informative short-length markers, and report repeatable and accurate detection at low densities of the target species. This study represents a framework for biosecurity agencies to develop eDNA procedures as an innovative management technique for routine surveillance of high risk imports. Future up-scaling of the method will open up prospects for long term monitoring of entire quarantine facilities for a variety of harmful species.  相似文献   

17.
Knowledge of the presence of an invasive species is critical to monitoring the sustainability of communities and ecosystems. Environmental DNA (eDNA), DNA fragments that are likely to be bound to organic matters in the water or in shed cells, has been used to monitor the presence of aquatic animals. Using an eDNA-based method, we estimated the presence of the invasive bluegill sunfish, Lepomis macrochirus, in 70 ponds located in seven locales on the Japanese mainland and on surrounding islands. We quantified the concentration of DNA copies in a 1 L water sample using quantitative real-time polymerase chain reaction (qPCR) with a primer/probe set. In addition, we visually observed the bluegill presence in the ponds from the shoreline. We detected bluegill eDNA in all the ponds where bluegills were observed visually and some where bluegills were not observed. Bluegills were also less prevalent on the islands than the mainland, likely owing to limited dispersal and introduction by humans. Our eDNA method simply and rapidly detects the presence of this invasive fish species with less disturbance to the environment during field surveys than traditional methods.  相似文献   

18.
Although environmental DNA (eDNA) has been used to infer the presence of rare aquatic species, many facets of this technique remain unresolved. In particular, the relationship between eDNA and fish distribution is not known. We examined the relationship between the distribution of fish and their eDNA (detection rate and concentration) in a lake. A quantitative PCR (qPCR) assay for a region within the cytochrome b gene of the common carp (Cyprinus carpio or ‘carp’), an ubiquitous invasive fish, was developed and used to measure eDNA in Lake Staring (MN, USA), in which both the density of carp and their distribution have been closely monitored for several years. Surface water, sub-surface water, and sediment were sampled from 22 locations in the lake, including areas frequently used by carp. In water, areas of high carp use had a higher rate of detection and concentration of eDNA, but there was no effect of fish use on sediment eDNA. The detection rate and concentration of eDNA in surface and sub-surface water were not significantly different (p≥0.5), indicating that eDNA did not accumulate in surface water. The detection rate followed the trend: high-use water > low-use water > sediment. The concentration of eDNA in sediment samples that were above the limit of detection were several orders of magnitude greater than water on a per mass basis, but a poor limit of detection led to low detection rates. The patchy distribution of eDNA in the water of our study lake suggests that the mechanisms that remove eDNA from the water column, such as decay and sedimentation, are rapid. Taken together, these results indicate that effective eDNA sampling methods should be informed by fish distribution, as eDNA concentration was shown to vary dramatically between samples taken less than 100 m apart.  相似文献   

19.
Invasive species pose a major threat to aquatic ecosystems. Their impact can be particularly severe in tropical regions, like those in northern Australia, where >20 invasive fish species are recorded. In temperate regions, environmental DNA (eDNA) technology is gaining momentum as a tool to detect aquatic pests, but the technology's effectiveness has not been fully explored in tropical systems with their unique climatic challenges (i.e. high turbidity, temperatures and ultraviolet light). In this study, we modified conventional eDNA protocols for use in tropical environments using the invasive fish, Mozambique tilapia (Oreochromis mossambicus) as a detection model. We evaluated the effects of high water temperatures and fish density on the detection of tilapia eDNA, using filters with larger pores to facilitate filtration. Large‐pore filters (20 μm) were effective in filtering turbid waters and retaining sufficient eDNA, whilst achieving filtration times of 2–3 min per 2‐L sample. High water temperatures, often experienced in the tropics (23, 29, 35 °C), did not affect eDNA degradation rates, although high temperatures (35 °C) did significantly increase fish eDNA shedding rates. We established a minimum detection limit for tilapia (1 fish/0.4 megalitres/after 4 days) and found that low water flow (3.17 L/s) into ponds with high fish density (>16 fish/0.4 megalitres) did not affect eDNA detection. These results demonstrate that eDNA technology can be effectively used in tropical ecosystems to detect invasive fish species.  相似文献   

20.
The prevention of non-indigenous aquatic invasive species spreading into new areas is a goal of many resource managers. New techniques have been developed to survey for species that are difficult to capture with conventional gears that involve the detection of their DNA in water samples (eDNA). This technique is currently used to track the invasion of bigheaded carps (silver carp and bighead carp; Hypophthalmichthys molitrix and H. nobilis) in the Chicago Area Waterway System and Upper Mississippi River. In both systems DNA has been detected from silver carp without the capture of a live fish, which has led to some uncertainty about the source of the DNA. The potential contribution to eDNA by vectors and fomites has not been explored. Because barges move from areas with a high abundance of bigheaded carps to areas monitored for the potential presence of silver carp, we used juvenile silver carp to simulate the barge transport of dead bigheaded carp carcasses, slime residue, and predator feces to determine the potential of these sources to supply DNA to uninhabited waters where it could be detected and misinterpreted as indicative of the presence of live bigheaded carp. Our results indicate that all three vectors are feasible sources of detectable eDNA for at least one month after their deposition. This suggests that current monitoring programs must consider alternative vectors of DNA in the environment and consider alternative strategies to minimize the detection of DNA not directly released from live bigheaded carps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号