首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
China has become one of the countries most seriously affected by invasive alien weeds in the world. Weeds impact agriculture, the environment and human health, and conventional control methods such as herbicides are expensive, damaging to human health and unsustainable. As the impacts and costs of weed control in China increase, there is an urgent need to manage some of the more important weeds through more sustainable methods. Classical biological control of invasive alien weeds is environmentally-friendly and sustainable. Biological control in China began in the 1930s with the introduction of two agents into Hong Kong for the control of Lantana camara. Since then, a further seven biological control agents have been introduced into China to control four weed species. In addition, 11 biological control agents targeting seven weed species have naturally spread into China. Together, these biological control agents are helping to control some of China's worst weeds. However, these efforts are only a small portion of the weeds that could be targeted for weed biological control. This paper reviews the current status of weed biological control efforts against introduced weeds in ten provinces and regions in southern China and provides a platform to identify the most effective and appropriate weed biological control opportunities and programmes to pursue in the future. Introducing additional safe and effective biological control agents into China to help manage some of the worst weeds in the region should reduce the use of herbicides and impacts on human health and the environment, while increasing productivity and food security.  相似文献   

2.
Agricultural systems around the world are faced with the challenge of providing for the demands of a growing human population. To meet this demand, agricultural systems have intensified to produce more crops per unit area at the expense of greater inputs. Agricultural intensification, while yielding more crops, generally has detrimental impacts on biodiversity. However, intensified agricultural systems often have fewer pests than more “environmentally-friendly” systems, which is believed to be primarily due to extensive pesticide use on intensive farms. In turn, to be competitive, less-intensive agricultural systems must rely on biological control of pests. Biological pest control is a complex ecosystem service that is generally positively associated with biodiversity of natural enemy guilds. Yet, we still have a limited understanding of the relationships between biodiversity and biological control in agroecosystems, and the mechanisms underlying these relationships. Here, we review the effects of agricultural intensification on the diversity of natural enemy communities attacking arthropod pests and weeds. We next discuss how biodiversity of these communities impacts pest control, and the mechanisms underlying these effects. We focus in particular on novel conceptual issues such as relationships between richness, evenness, abundance, and pest control. Moreover, we discuss novel experimental approaches that can be used to explore the relationships between biodiversity and biological control in agroecosystems. In particular, we highlight new experimental frontiers regarding evenness, realistic manipulations of biodiversity, and functional and genetic diversity. Management shifts that aim to conserve diversity while suppressing both insect and weed pests will help growers to face future challenges. Moreover, a greater understanding of the interactions between diversity components, and the mechanisms underlying biodiversity effects, would improve efforts to strengthen biological control in agroecosystems.  相似文献   

3.
Scientific drilling to recover sediment core and fossil samples is a promising approach to increasing our understanding of species evolution in ancient lakes. Most lake drilling efforts to date have focused on paleoclimate reconstruction. However, it is clear from the excellent fossil preservation and high temporal resolution typical of lake beds that significant advances in evolutionary biology can be made through drill core studies coordinated with phylogenetic work on appropriate taxa. Geological records can be used to constrain the age of specific lakes and the timing of evolutionarily significant events (such as lake level fluctuations and salinity crises). Fossil data can be used to test speciation and biogeographic hypotheses and flesh out phylogenetic trees, using a better-resolved fossil record to estimate timing of phylogenetic divergences. The extraordinary preservation of many fossils in anoxic lake beds holds the hope of collecting fossil DNA from the same body fossils that improve our understanding of morphological character evolution and adaptation. Moreover, fossils allow calibration of molecular clocks, which are currently largely inferential. Lake Malawi Drilling Project results provide some guideposts on what might be expected in a drilling project for studies of evolution. The extreme variability in lake level and environmental history that most ancient lakes experience (exemplified by the Lake Malawi record) demonstrates that no one drilling locality is likely to provide a complete record of phylogenetic history for a radiating lineage. Evolutionary biologists should take an active role in the design of drilling projects, which typically have interdisciplinary objectives, to ensure their sampling needs will be met by whatever sites in a lake are ultimately drilled.  相似文献   

4.
Climatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experiments indicates that they have provided important information on how water regulates ecosystem processes. However, they do not adequately represent global biomes nor forecasted precipitation scenarios and their potential contribution to advance our understanding of ecosystem responses to precipitation changes is therefore limited, as is their potential value for the development and testing of ecosystem models. This highlights the need for new precipitation experiments in biomes and ambient climatic conditions hitherto poorly studied applying relevant complex scenarios including changes in precipitation frequency and amplitude, seasonality, extremity and interactions with other global change drivers. A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities. Experiments should specifically test how changes in precipitation leading to exceedance of biological thresholds affect ecosystem resilience and acclimation.  相似文献   

5.
Evidence from both physiological experiments and randomized trials demonstrates that elevating vitamin D status above levels prevailing in the North American and European adult populations improves calcium absorption and reduces fall risk and osteoporotic fractures. Additionally observational data suggest that raising vitamin D status protects against various cancers and autoimmune disorders as well. Hence a strong case can be made for immediate improvement in vitamin D status of the general population.  相似文献   

6.
The current revolution in biological microscopy stems from the realisation that advances in optics and computational tools and automation make the modern microscope an instrument that can access all scales relevant to modern biology - from individual molecules all the way to whole tissues and organisms and from single snapshots to time-lapse recordings sampling from milliseconds to days. As these and more new technologies appear, the challenges of delivering them to the community grows as well. I discuss some of these challenges, and the examples where openly shared technology have made an impact on the field.  相似文献   

7.
In a previous study we demonstrated greater abundance of the parasitoid Anagrus epos (Girault) in grape vineyards located downwind of prune trees that function as overwintering habitats. This study examines whether these higher A. epos numbers translated into higher egg parasitism rates of the grape leafhopper, Erythroneura elegantula (Osborn). Paired commercial wine-grape vineyard plots, one with and one without adjacent prune trees, were studied within a complete block design in northern and central California. A. epos was the key mortality factor affecting E. elegantula eggs. Point estimates of A. epos parasitism rates were significantly greater in vineyards associated with prune trees during the first E. elegantula generation in both 1991 and 1992. No consistent differences in parasitism rates were observed during the second or third generations. The results indicated that prune trees enhance early season parasitism rates. Cumulative estimates of egg parasitism across E. elegantula generations demonstrated that enhanced early-season parasitism resulted in a net season-long increase in the degree of mortality imposed by A. epos on E. elegantula eggs. Two factors were found to influence parasitism rates: the abundance of early-season A. epos adults moving into vineyards and the density of E. elegantula eggs in vineyards. Our results indicate that diversification of vineyards using prune trees supports overwintering populations of a specialist parasitoid and thereby alters host-parasitoid interactions to favor enhanced parasitism in vineyards.  相似文献   

8.
9.
Eriophyid mites have been considered to have a high potential for use as classical biological control agents of weeds. We reviewed known examples of the use of eriophyid mites to control weedy plants to learn how effective they have been. In the past 13 years, since Rosenthal’s 1996 review, 13 species have undergone some degree of pre-release evaluation (Aceria genistae, A. lantanae, Aceria sp. [boneseed leaf buckle mite (BLBM)], A. salsolae, A. sobhiani, A. solstitialis, A. tamaricis, A. thalgi, A. thessalonicae, Cecidophyes rouhollahi, Floracarus perrepae, Leipothrix dipsacivagus and L. knautiae), but only four (A. genistae, Aceria sp. [BLBM], C. rouhollahi and F. perrepae) have been authorized for introduction. Prior to this, three species (Aceria chondrillae, A. malherbae and Aculus hyperici) were introduced and have become established. Although these three species impact the fitness of their host plant, it is not clear how much they have contributed to reduction of the population of the target weed. In some cases, natural enemies, resistant plant genotypes, and adverse abiotic conditions have reduced the ability of eriophyid mites to control target weed populations. Some eriophyid mites that are highly coevolved with their host plant may be poor prospects for biological control because of host plant resistance or tolerance of the plant to the mite. Susceptibility of eriophyids to predators and pathogens may also prevent them from achieving population densities necessary to reduce host plant populations. Short generation time, high intrinsic rate of increase and high mobility by aerial dispersal imply that eriophyids should have rapid rates of evolution. This raises concerns that eriophyids may be more likely to lose efficacy over time due to coevolution with the target weed or that they may be more likely to adapt to nontarget host plants compared to insects, which have a longer generation time and slower population growth rate. Critical areas for future research include life history, foraging and dispersal behavior, mechanisms controlling host plant specificity, and evolutionary stability of eriophyid mites. This knowledge is critical for designing and interpreting laboratory and field experiments to measure host plant specificity and potential impact on target and nontarget plants, which must be known before they can be approved for release. One of the more successful examples of an eriophyid mite controlling an invasive alien weed is Phyllocoptes fructiphilus, whose impact is primarily due to transmission of a virus pathogenic to the target, Rosa multiflora. Neither the mite nor the virus originated from the target weed, which suggests that using “novel enemies” may sometimes be an effective strategy for using eriophyid mites.  相似文献   

10.
11.
Weed biological control in California, USA began in 1940 with the release of a native scale insect on native Opuntia spp. on Santa Cruz Island, just offshore from mainland California. Since then, a total 39 weed species have been targets of biological control releases in California. Releases on 11 weed targets were transfer experiments where agents from related weed hosts were released on a new host. Most of the transfer experiment introductions failed but one weed was successfully controlled. Of the other 28 weeds, release sites for three species were destroyed and for six species releases are too recent to score, but for 19 weeds, their level of control was rated as: complete control (three species), substantial control (five species), and partial (six species), and negligible control (five species). Overall, 42% of the projects provide successful control, a result lower than observed in other countries worldwide. Since 1940, 77 species of agents have been released: 54 species established, 12 species failed to establish, six species had their release sites destroyed, and five species are too early to determine. Establishment rate was 82% but the rate differed among taxonomic orders. Individual agents were scored according to level of impact on their host and Coleoptera obtained the highest average impact score and Diptera the lowest. Mean impact scores over time showed a substantial drop in the 1980s but later increased. Future research efforts that emphasize introduction of high impact agents will further support development of this critical weed control method for California.  相似文献   

12.
Several fruit fly species (Diptera: Tephritidae) are invasive pests that damage the quality of fruits in horticultural crops and cause significant value losses worldwide. Management of fruit flies mainly depends on conventional insecticides. Unfortunately, the application of synthetic insecticides has caused environmental pollution, risks for humans and animals, and development of resistance. Furthermore, controlling fruit flies by applying synthetic insecticides is challenging because fruit containing third instars often fall from the tree – subsequently the larvae leave the decaying fruits and pupate in the soil. Consequently, both larvae and pupae are protected from surface-applied insecticides in fruits and soil. So, there is a pressing need for more eco-friendly and selective control measures with new modes of action. Among such measures are entomopathogenic fungi (EPFs) and nematodes (EPNs). I gathered knowledge on past and present research about EPFs and EPNs as biocontrol agents against fruit flies to investigate approaches that may improve their capacities. I also highlighted several recommendations that may help future field studies on the suppression of fruit fly populations by EPFs and EPNs.  相似文献   

13.
ABSTRACT

In Taiwan, the agricultural policy, ‘Reduce the consumption of pesticide to half in the next 10 years’, was launched in 2017. Pesticide application, which results in contamination of food by chemical residues, pest resistance, and other adverse ecological effects, is a growing public and environmental concern. Pest control by natural predators is, thus, the best alternative. Biological control methods implemented based on insights obtained from studies on pest behaviour, rearing, and various crop management modes, increase the possibility of controlling pests in modern organic agricultural systems. More than a decade has passed since the first introduction of a predatory insect in Taiwan for pest control (in the 1990s). Predatory and parasitic natural enemies, including lacewing, predatory stink bugs, Orius, and parasitic wasps, were initially used for controlling thrips, aphids, spider mites, whiteflies, and lepidopteran pests. At present, there exists a wide range of integrated pest management (IPM) methods incorporating other non-chemical, biological, and agricultural methods. However, recently, there has been an increase in research and development on the utilisation of natural enemies of insects and the associated food safety issues. Mass production and release, storage, and handling techniques of insect predators and parasitoids have been successful in recent years. The final goal of present day research is to develop natural enemy products and provide an IPM-based model to farmers for using natural enemies in agricultural production systems, thereby reducing pesticide application and ensuring food security.  相似文献   

14.
15.
16.
The development of Near Infrared Spectroscopy has paralleled that of the PC, and the application of NIR in many industries has undergone explosive growth in recent years. This has been particularly apparent in the area of microbial and cell culture system monitoring and control. Potentially, NIR offers the prospect of real-time control of the physiology of cultured cells in fermenters, leading to marked improvements in authenticity, purity and production efficiency. Despite this, NIR is not yet as widely applied within the bioprocessing industry as its potential might suggest. This review critically evaluates the development of this rapidly moving area as it pertains to microbial and cell culture system control and highlights the critical stages in the development of the technology. It indicates the work that must still be carried out if the full potential of NIR is to be exploited in making proteins, hormones and antibiotics by the fermentation route. The review comes at a particularly timely moment when NIR stands on the threshold of widespread acceptance in bioprocessing. This is the ideal moment to assess what the technology can offer the microbiologist, and where it may develop in the future.  相似文献   

17.
Dysbiosis or dysbacteriosis is defined as a shift in the intestinal microbiota composition resulting in an imbalance between beneficial and harmful bacteria. Since the ban on the use of growth-promoting antibiotics in animal feed in the EU, dysbiosis has emerged as a major problem in intensive animal production. Prebiotics and probiotics are currently under investigation as possible alternatives to growth-promoting antibiotics, as their mode of action is thought to be based largely on a modulation of the composition and function of the intestinal microbiota. In this review, we analyse the currently available data from both animal and human nutrition that document the potential and limitations of prebiotics and probiotics for the control of dysbiosis. An impressive number of empirical feeding trials have been carried out in healthy animals, yielding sometimes contradictory results. More in-depth studies have revealed the complexity of the interactions taking place in the lower intestinal tract, thus illustrating that pre- and probiotics cannot be a simple replacement for growth-promoting antibiotics. Although there are indications that the strategic use of pre- and probiotics can provide major benefits, there is still a lack of basic knowledge on the delicate interactions between the microbiota, the host and the feed components, which hampers the widespread use of these valuable feed additives.  相似文献   

18.
India is gearing up to become an international player in the life sciences, powered by its recent economic growth and a desire to add biotechnology to its portfolio. In this article, we present the history, current state, and projected future growth of biological research in India. To fulfill its aspirations, India''s greatest challenge will be in educating, recruiting, and supporting its next generation of scientists. Such challenges are faced by the US/Europe, but are particularly acute in developing countries that are racing to achieve scientific excellence, perhaps faster than their present educational and faculty support systems will allow.India, like China, has been riding a rising economic wave. At the time of writing this article, four Indians rank among the ten wealthiest individuals in the world, and the middle class is projected to rise to 40% of the population by 2025 (Farrell and Beinhocker, 2007). Even with the present global economic setbacks, India''s economy is expected to grow to become the third largest in the world. India''s recent economic boom has been driven largely by its service and information technology industries, fueled to a large extent by jobs provided by multinational companies. However, this “outsourcing” model is unlikely to persist indefinitely. India''s future must rely upon its own capacity for innovation, which will require considerable investment in education and research.Biotechnology represents a potential sector of economic growth and an important component in India''s national health agenda. Appreciating the important role that biology will play in this century, the Indian government is expanding as well as starting several new biological research institutes, which will open up many new positions for life science researchers. Funds also are becoming available for state-of-the-art equipment, thus decreasing the earlier large disparity in support facilities between the top research institutes in India and the US/Europe. India is becoming an increasingly viable location to conduct biological research and a fertile ground for new biotechnology companies. However, success need not rise in proportion to money invested, unless India attracts and supports its best young people to do research.Many academic centers and industries in the US/Europe are beginning to have an eye on India, the world''s largest democratic country, for possible collaborations. Western institutions have long benefited from having Indian scientists on their faculty or postdoctoral fellows/graduate students in their laboratories (perhaps benefitting more than India itself). However, Western scientists, by and large, know very little about the scientific and educational systems in India. (As was true of authors of this article before we began our 8-month sabbatical at the National Center for Biological Sciences in Bangalore). The goal of this article is to provide a brief historical and contemporary view of the biological sciences in India. We also provide an editorial perspective on the upcoming challenges for the Indian life sciences, with a particular emphasis on how India will grow and support its next generation of scientific leaders.  相似文献   

19.
  1. In low-gradient, macrophyte-rich rivers, we expect that the significant change in macrophyte biomass among seasons will strongly influence both biological activity and hydraulic conditions resulting in significant effects on nutrient dynamics. Understanding seasonal variation will improve modelling of nutrient transport in river networks, including annual estimations of export, which could optimise decision-making and management outcomes.
  2. We explored the relationships among seasonal differences in reach-scale nutrient uptake, macrophyte abundance, solute transport and transient storage in the River Gudenå (Denmark), a large macrophyte-rich river. We used the minimal pulse addition technique to measure uptake of ammonium, nitrate, soluble reactive phosphorus, as well as reach-scale metabolism, and surface transient storage in spring, summer, and autumn.
  3. We found that riverine uptake changed among seasons and was linked to macrophyte biomass via both biological activity, reflected in reach-scale metabolism, and through physical processes, as solute transport was influenced by longitudinal dispersion. In this macrophyte-rich river, seasonal changes in macrophyte biomass affected contact time between the water and biota, which influenced ammonium and soluble reactive phosphorus uptake. Using stoichiometric scaling of reach-scale metabolism, we found that seasonal variation also influenced the relative contributions of autotrophic and heterotrophic biota in assimilatory uptake.
  4. In summary, riverine nutrient uptake was not static, highlighting the importance of seasonality, with significant implications for modelling of nutrient export in river networks. Moreover, current management strategies that remove macrophyte biomass (i.e. weed cutting and dredging) will short-circuit the positive effects of enhanced nutrient uptake resulting from abundant macrophytes in rivers.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号