首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background  

Although multiple templates are frequently used in comparative modeling, the effect of inclusion of additional template(s) on model accuracy (when compared to that of corresponding single-template based models) is not clear. To address this, we systematically analyze two-template models, the simplest case of multiple-template modeling. For an existing target-template pair (single-template modeling), a two-template based model of the target sequence is constructed by including an additional template without changing the original alignment to measure the effect of the second template on model accuracy.  相似文献   

2.
The accuracy of comparative models of proteins is addressed here. A set of 12732 single-template models of sequences of known high-resolution structures was built by an automated procedure. Accuracy of several structure-derived properties, such as surface area, residue accessibility, presence of pockets, electrostatic potential and others, was determined as a function of template:target sequence identity by comparing models with their corresponding experimental structures. As expected, the average accuracy of structure-derived properties always increases with higher template:target sequence identity, but the exact shape of this relationship can differ from one property to another. A comparison of structure-derived properties measured from NMR and X-ray structures of the same protein shows that for most properties, the NMR/X-ray difference is of the same order as the error in models based on ~40% template:target sequence identity. The exact sequence identity at which properties reach that accuracy varies between 25 and 50%, depending on the property being analyzed. A general characteristic of simple comparative models is that their surface has increased area as a consequence of being more rugged than that of experimental structures. This suggests that including solvent effects during model building or refinement could significantly improve the accuracy of surface properties in comparative models.  相似文献   

3.
ModBase: a database of comparative protein structure models   总被引:4,自引:0,他引:4  
ModBase is a database of evaluated and annotated comparative protein structure models. The database also includes fold assignments and alignments on which the models were based.  相似文献   

4.
MODBASE (http://guitar.rockefeller.edu/modbase) is a relational database of annotated comparative protein structure models for all available protein sequences matched to at least one known protein structure. The models are calculated by MODPIPE, an automated modeling pipeline that relies on PSI-BLAST, IMPALA and MODELLER. MODBASE uses the MySQL relational database management system for flexible and efficient querying, and the MODVIEW Netscape plugin for viewing and manipulating multiple sequences and structures. It is updated regularly to reflect the growth of the protein sequence and structure databases, as well as improvements in the software for calculating the models. For ease of access, MODBASE is organized into different datasets. The largest dataset contains models for domains in 304 517 out of 539 171 unique protein sequences in the complete TrEMBL database (23 March 2001); only models based on significant alignments (PSI-BLAST E-value < 10–4) and models assessed to have the correct fold are included. Other datasets include models for target selection and structure-based annotation by the New York Structural Genomics Research Consortium, models for prediction of genes in the Drosophila melanogaster genome, models for structure determination of several ribosomal particles and models calculated by the MODWEB comparative modeling web server.  相似文献   

5.
MODBASE is a queryable database of annotated comparative protein structure models. The models are derived by MODPIPE, an automated modeling pipeline relying on the programs PSI-BLAST and MODELLER. The database currently contains 3D models for substantial portions of approximately 17 000 proteins from 10 complete genomes, including those of Caenorhabditis elegans, Saccharomyces cerevisiae and Escherichia coli, as well as all the available sequences from Arabidopsis thaliana and Homo sapiens. The database also includes fold assignments and alignments on which the models were based. In addition, special care is taken to assess the quality of the models. ModBase is accessible through a web interface at http://guitar.rockefeller.edu/modbase/  相似文献   

6.
The following resources for comparative protein structure modeling and analysis are described (http://salilab.org): MODELLER, a program for comparative modeling by satisfaction of spatial restraints; MODWEB, a web server for automated comparative modeling that relies on PSI-BLAST, IMPALA and MODELLER; MODLOOP, a web server for automated loop modeling that relies on MODELLER; MOULDER, a CPU intensive protocol of MODWEB for building comparative models based on distant known structures; MODBASE, a comprehensive database of annotated comparative models for all sequences detectably related to a known structure; MODVIEW, a Netscape plugin for Linux that integrates viewing of multiple sequences and structures; and SNPWEB, a web server for structure-based prediction of the functional impact of a single amino acid substitution.  相似文献   

7.

Background  

Comparative, or homology, modelling of protein structures is the most widely used prediction method when the target protein has homologues of known structure. Given that the quality of a model may vary greatly, several studies have been devoted to identifying the factors that influence modelling results. These studies usually consider the protein as a whole, and only a few provide a separate discussion of the behaviour of biologically relevant features of the protein. Given the value of the latter for many applications, here we extended previous work by analysing the preservation of native protein clefts in homology models. We chose to examine clefts because of their role in protein function/structure, as they are usually the locus of protein-protein interactions, host the enzymes' active site, or, in the case of protein domains, can also be the locus of domain-domain interactions that lead to the structure of the whole protein.  相似文献   

8.
Comparative modelling is a powerful method that easily predicts a considerably accurate structure of a protein by using a template structure having a similar amino-acid sequence to the target protein. However, in the region where the amino-acid sequence is different between the target and the template, the predicted structure remains unreliable. In such a case, the model has to be refined. In the present study, we explored the possibility of a molecular dynamics-based method, using the human SAP Src Homology 2 (SH2) domain as the modelling target. The multicanonical method was used to alleviate the multiple-minima problem and the generalised Born/surface area model was used to reduce the computational cost. In addition, position restraints were imposed on the atoms in the reliable regions to avoid unnecessary conformational sampling. We analyzed the conformational distribution of the ligand-recognition loop of the domain and found that the most populated conformational clusters in the ensemble of the model agreed well with one of the two major clusters in the ensemble of the reference simulation starting from the crystal structure. This demonstrates that the current refinement method can significantly improve the accuracy of an unreliable region in a comparative model.  相似文献   

9.
The simple construction of protein alpha-carbon models   总被引:2,自引:0,他引:2  
B Rubin  J S Richardson 《Biopolymers》1972,11(11):2381-2385
A method has been developed for the rapid construction of protein alpha-carbon models from a continuous length of metal rod. Selected side groups can be attached, and the scale is continuously variable from 20mm/Å to 4mm/Å. At the smaller scales, models are self-supporting.  相似文献   

10.
《Ecological Complexity》2007,4(4):212-222
We study the dynamical complexity of five non-linear deterministic predator–prey model systems. These simple systems were selected to represent a diversity of trophic structures and ecological interactions in the real world while still preserving reasonable tractability. We find that these systems can dramatically change attractor types, and the switching among different attractors is dependent on system parameters. While dynamical complexity depends on the nature (e.g., inter-specific competition versus predation) and degree (e.g., number of interacting components) of trophic structure present in the system, these systems all evolve principally on intrinsically noisy limit cycles. Our results support the common observation of cycling and rare observation of chaos in natural populations. Our study also allows us to speculate on the functional role of specialist versus generalist predators in food web modeling.  相似文献   

11.
The determination of the 16S and 23S rRNA secondary structure models was initiated shortly after the first complete 16S and 23S rRNA sequences were determined in the late 1970s. The structures that are common to all 16S rRNAs and all 23S rRNAs were determined using comparative methods from the analysis of thousands of rRNA sequences. Twenty-plus years later, the 16S and 23S rRNA comparative structure models have been evaluated against the recently determined high-resolution crystal structures of the 30S and 50S ribosomal subunits. Nearly all of the predicted covariation-based base pairs, including the regular base pairs and helices, and the irregular base pairs and tertiary interactions, were present in the 30S and 50S crystal structures.  相似文献   

12.
Ozkan SB  Dill KA  Bahar I 《Biopolymers》2003,68(1):35-46
We describe the master equation method for computing the kinetics of protein folding. We illustrate the method using a simple Go model. Presently most models of two-state fast-folding protein folding kinetics invoke the classical idea of a transition state to explain why there is a single exponential decay in time. However, if proteins fold via funnel-shaped energy landscapes, as predicted by many theoretical studies, then it raises the question of what is the transition state. Is it a specific structure, or a small ensemble of structures, as is expected from classical transition state theory? Or is it more like the denatured states of proteins, a very broad ensemble? The answer that is usually obtained depends on the assumptions made about the transition state. The present method is a rigorous way to find transition states, without assumptions or approximations, even for very nonclassical shapes of energy landscapes. We illustrate the method here, showing how the transition states in two-state protein folding can be very broad ensembles. © 2002 Wiley Periodicals, Inc. Biopolymers 68: 35–46, 2003  相似文献   

13.
Su JG  Jiao X  Sun TG  Li CH  Chen WZ  Wang CX 《Biophysical journal》2007,92(4):1326-1335
In this work, the mechanism of domain movements of glutamine-binding protein (GlnBP), especially the influence of the ligand on GlnBP dynamic behavior is investigated with the aid of a Gaussian network model (GNM) and an anisotropy elastic network model. The results show that the "open-closed" transition mainly appears as the large movement of the small domain, especially the top region including two alpha-helices and two beta-strands. The slowest mode of each three forms of GlnBP--ligand-free open, ligand-bound closed, and ligand-free closed GlnBP--shows that the open-closed motion of the two domains has a common hinge axis centered on Lys-87 and Gln-183. Accompanying the conformational transition, the residues within both large and small domains move in a highly coupled way. The peaks of the fast modes correspond to residues that were thought, in the GNM, to be important for the stability of the protein, and these residues may be involved in the interactions with the membrane-bound components. With the contacts between the large domain and the small domain increasing, the ability of the "open-closed" motion is decreased. All the results agree well with those of molecular dynamics simulations, and it is thought that the open-closed conformation transition is the nature of the topology structure of GlnBP. Also, the influence of the ligand on GlnBP is studied with a modified GNM method. The results obtained show that the ligand does not influence the closed-to-open transition tendency.  相似文献   

14.
Understanding the evolution of biopolymers is important to rationalise the directed and undirected design of functional molecules. Large scale experiments or detailed computational studies are often impractical. Therefore, simple model systems, such as RNA secondary structure and lattice proteins have been adapted to study general statistical and topological features of genotype (sequence) to phenotype (structure) maps. We review findings from such models that address aspects of thermodynamic and mutational robustness, neutral evolution and recombination of proteins. We compare various modelling approaches, and discuss their generality, parameter dependency and experimental verifications of their predictions. The most striking observation is the universal emergence of neutral nets--sets of phenotypically identical genotypes that are interconnected by series of point mutations. However, fast adaptation by point mutations appears to be problematic for proteins. This may explain why proteins appear to be more specific while RNA is rather versatile. This could even be the reason why RNA had to evolve before proteins. Similar principles of biological organisation are reflected in sequence and structure databases of real proteins. Insights gained from modelling are useful for designing more efficient database organisation and search strategies.  相似文献   

15.
The nucleotide sequence was established for the full-length Flavobacterium aquatile operon coding for the FauI restriction-modification system. The operon is unusual in structure and has the gene order control protein gene-DNA methyltransferase A gene-restriction endonuclease gene-DNA methyltransferase B gene, other than in the known analogs. The genes are similarly oriented and overlap. On evidence of sequence analysis, both methyltransferases are C5 enzymes, the control protein is similar to that of other restriction-modification systems, and restriction endonuclease is low-homologous to other enzymes cleaving the DNA upper strand in position 4 or 5 relative to the recognition site.  相似文献   

16.
Proteins with homologous amino acid sequences have similar folds and it has been assumed that an unknown three-dimensional structure can be obtained from a known homologous structure by substituting new side-chains into the polypeptide chain backbone, followed by relatively small adjustment of the model. To examine this approach of structure prediction and, more generally, to isolate the characteristics of native proteins, we constructed two incorrectly folded protein models. Sea-worm hemerythrin and the variable domain of mouse immunoglobulin K-chain, two proteins with no sequence homology, were chosen for study; the former is composed of a bundle of four alpha-helices and the latter consists of two 4-stranded beta-sheets. Using an automatic computer procedure, hemerythrin side-chains were substituted into the immunoglobulin domain and vice versa. The structures were energy-minimized with the program CHARMM and the resulting structures compared with the correctly folded forms. It was found that the incorrect side-chains can be incorporated readily into both types of structures (alpha-helices, beta-sheets) with only small structural adjustments. After constrained energy-minimization, which led to an average atomic co-ordinate shift of no more than 0.7 to 0.9 A, the incorrectly folded models arrived at potential energy values comparable to those of the correct structures. Detailed analysis of the energy results shows that the incorrect structures have less stabilizing electrostatic, van der Waals' and hydrogen-bonding interactions. The difference is particularly pronounced when the electrostatic and van der Waals' energy terms are calculated by modified equations that include an approximate representation of solvent effects. The incorrectly folded structures also have a significantly larger solvent-accessible surface and a greater fraction of non-polar side-chain atoms exposed to solvent. Examination of their interior shows that the packing of side-chains at the secondary structure interfaces, although corresponding to sterically allowed conformations, deviates from the characteristics found in normal proteins. The analysis of incorrectly folded structures has made it clear that the absence of bad non-bonded contacts, though necessary, is not sufficient to demonstrate the validity of model-built structures and that modeling of homologous structures has to be accompanied by a thorough quantitative evaluation of the results. Further, certain features that characterize native proteins are made evident by their absence in misfolded models.  相似文献   

17.
18.
19.

Background  

SCOP and CATH are widely used as gold standards to benchmark novel protein structure comparison methods as well as to train machine learning approaches for protein structure classification and prediction. The two hierarchies result from different protocols which may result in differing classifications of the same protein. Ignoring such differences leads to problems when being used to train or benchmark automatic structure classification methods. Here, we propose a method to compare SCOP and CATH in detail and discuss possible applications of this analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号