首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability to replace wild-type mitochondrial DNA sequences in yeast with in vitro-generated mutations has been exploited to study the mechanism by which the nuclearly encoded PET111 protein specifically activates translation of the mitochondrially coded COX2 mRNA. We have generated three mutations in vitro that alter the COX2 mRNA 5'-untranslated leader (UTL) and introduced them into the mitochondrial genome, replacing the wild-type sequence. None of the mutations significantly affected the steady-state level of COX2 mRNA. Deletion of a single base at position -24 (relative to the translation initiation codon) in the 5'-UTL (cox2-11) reduced COX2 mRNA translation and respiratory growth, whereas insertion of four bases in place of the deleted base (cox2-12) and deletion of bases -30 to -2 (cox2-13) completely blocked both. Six spontaneous nuclear mutations were selected as suppressors of the single-base 5'-UTL deletion, cox2-11. One of these mapped to PET111 and was shown to be a missense mutation that changed residue 652 from Ala to Thr. This suppressor, PET111-20, failed to suppress the 29-base deletion, cox2-13, but very weakly suppressed the insertion mutation, cox2-12. PET111-20 also enhanced translation of a partially functional COX2 mRNA with a wild-type 5'-UTL but a mutant initiation codon. Although overexpression of the wild-type PET111 protein caused weak suppression of the single-base deletion, cox2-11, the PET111-20 suppressor mutation did not function simply by increasing the level of the protein. These results demonstrate an intimate functional interaction between the translational activator protein and the mRNA 5'-UTL and suggest that they may interact directly.  相似文献   

2.
The protein specified by the Saccharomyces cerevisiae nuclear gene PET111 specifically activates translation of the mitochondrially coded mRNA for cytochrome c oxidase subunit II (Cox2p). We found Pet111p specifically in mitochondria of both wild-type cells and cells expressing a chromosomal gene for a functional epitope-tagged form of Pet111p. Pet111p was associated with mitochondrial membranes and was highly resistant to extraction with alkaline carbonate. Pet111p was protected from proteolytic digestion by the mitochondrial inner membrane. Thus, it is exposed only on the matrix side, where it could participate directly in organellar translation and localize Cox2p synthesis by virtue of its functional interaction with the COX2 mRNA 5'-untranslated leader. We also found that Pet111p is present at levels limiting the synthesis of Cox2p by examining the effect of altered PET111 gene dosage in the nucleus on expression of a reporter gene, cox2::ARG8(m), that was inserted into mitochondrial DNA. The level of the reporter protein, Arg8p, was one-half that of wild type in a diploid strain heterozygous for a pet111 deletion mutation, whereas it was increased 2.8-fold in a strain bearing extra copies of PET111 on a high-copy plasmid. Thus, Pet111p could play dual roles in both membrane localization and regulation of Cox2p synthesis within mitochondria.  相似文献   

3.
4.
Expression of yeast mitochondrial genes depends on specific translational activators acting on the 5'-untranslated region of their target mRNAs. Mss51p is a translational factor for cytochrome c oxidase subunit 1 (COX1) mRNA and a key player in down-regulating Cox1p expression when subunits with which it normally interacts are not available. Mss51p probably acts on the 5'-untranslated region of COX1 mRNA to initiate translation and on the coding sequence itself to facilitate elongation. Mss51p binds newly synthesized Cox1p, an interaction that could be necessary for translation. To gain insight into the different roles of Mss51p on Cox1p biogenesis, we have analyzed the properties of a new mitochondrial protein, mp15, which is synthesized in mss51 mutants and in cytochrome oxidase mutants in which Cox1p translation is suppressed. The mp15 polypeptide is not detected in cox14 mutants that express Cox1p normally. We show that mp15 is a truncated translation product of COX1 mRNA whose synthesis requires the COX1 mRNA-specific translational activator Pet309p. These results support a key role for Mss51p in translationally regulating Cox1p synthesis by the status of cytochrome oxidase assembly.  相似文献   

5.
Translation of the mitochondrially coded COX2 mRNA within the organelle in yeast produces the precursor of Cox2p (pre-Cox2p), which is processed and assembled into cytochrome c oxidase. The mRNA sequence of the first 14 COX2 codons, specifying the pre-Cox2p leader peptide, was previously shown to contain a positively acting element required for translation of a mitochondrial reporter gene, ARG8(m), fused to the 91st codon of COX2. Here we show that three relatively short sequences within the COX2 mRNA coding sequence, or structures they form in vivo, inhibit translation of the reporter in the absence of the positive element. One negative element was localized within codons 15 to 25 and shown to function at the level of the mRNA sequence, whereas two others are within predicted stem-loop structures formed by codons 22-44 and by codons 46-74. All three of these inhibitory elements are antagonized in a sequence-specific manner by reintroduction of the upstream positive-acting sequence. These interactions appear to be independent of 5'- and 3'-untranslated leader sequences, as they are also observed when the same reporter constructs are expressed from the COX3 locus. Overexpression of MRS2, which encodes a mitochondrial magnesium carrier, partially suppresses translational inhibition by each isolated negatively acting element, but does not suppress them in combination. We hypothesize that interplay among these signals during translation in vivo may ensure proper timing of pre-Cox2p synthesis and assembly into cytochrome c oxidase.  相似文献   

6.
Dramatically elevated levels of the COX2 mitochondrial mRNA-specific translational activator protein Pet111p interfere with respiratory growth and cytochrome c oxidase accumulation. The respiratory phenotype appears to be caused primarily by inhibition of the COX1 mitochondrial mRNA translation, a finding confirmed by lack of cox1Delta::ARG8(m) reporter mRNA translation. Interference with Cox1p synthesis depends to a limited extent upon increased translation of the COX2 mRNA, but is largely independent of it. Respiratory growth is partially restored by a chimeric COX1 mRNA bearing the untranslated regions of the COX2 mRNA, and by overproduction of the COX1 mRNA-specific activators, Pet309p and Mss51p. These results suggest that excess Pet111p interacts unproductively with factors required for normal COX1 mRNA translation. Certain missense mutations in PET111 alleviate the interference with COX1 mRNA translation but do not completely restore normal respiratory growth in strains overproducing Pet111p, suggesting that elevated Pet111p also perturbs assembly of newly synthesized subunits into active cytochrome c oxidase. Thus, this severe imbalance in translational activator levels appears to cause multiple problems in mitochondrial gene expression, reflecting the dual role of balanced translational activators in cooperatively regulating both the levels and locations of organellar translation.  相似文献   

7.
J. J. Mulero  T. D. Fox 《Genetics》1993,133(3):509-516
PET111 is a yeast nuclear gene specifically required for the expression of the mitochondrial gene COX2, encoding cytochrome c oxidase subunit II (coxII). Previous studies have shown that PET111 activates translation of the COX2 mRNA. To map the site of PET111 action we have constructed, in vitro, genes coding for chimeric mRNAs, introduced them into mitochondria by transformation and studied their expression. Translation of a chimeric mRNA with the 612-base 5'-untranslated leader of the COX3 mRNA fused precisely to the structural gene for the coxII-precursor protein is independent of PET111, but does require a COX3 mRNA-specific translational activator known to work on the COX3 5'-leader. This result demonstrates that PET111 is not required for any posttranslational step. Translation of a chimeric mRNA with the 54-base 5'-leader of the COX2 mRNA fused precisely to the structural gene for cytochrome c oxidase subunit III was dependent on PET111 activity. These results demonstrate that PET111 acts specifically at a site in the short COX2 5'-leader to activate translation of downstream coding sequences.  相似文献   

8.
The core of the cytochrome c oxidase complex is composed of its three largest subunits, Cox1p, Cox2p, and Cox3p, which are encoded in mitochondrial DNA of Saccharomyces cerevisiae and inserted into the inner membrane from the inside. Mitochondrial translation of the COX1, COX2, and COX3 mRNAs is activated mRNA specifically by the nuclearly coded proteins Pet309p, Pet111p, and the concerted action of Pet54p, Pet122p, and Pet494p, respectively. Because the translational activators recognize sites in the 5'-untranslated leaders of these mRNAs and because untranslated mRNA sequences contain information for targeting their protein products, the activators are likely to play a role in localizing translation. Herein, we report physical associations among the mRNA-specific translational activator proteins, located on the matrix side of the inner membrane. These interactions, detected by coimmune precipitation and by two-hybrid experiments, suggest that the translational activator proteins could be organized on the surface of the inner membrane such that synthesis of Cox1p, Cox2p, and Cox3p would be colocalized in a way that facilitates assembly of the core of the cytochrome c oxidase complex. In addition, we found interactions between Nam1p/Mtf2p and the translational activators, suggesting an organized delivery of mitochondrial mRNAs to the translation system.  相似文献   

9.
Translation of mitochondrially coded mRNAs in Saccharomyces cerevisiae depends on membrane-bound mRNA-specific activator proteins, whose targets lie in the mRNA 5'-untranslated leaders (5'-UTLs). In at least some cases, the activators function to localize translation of hydrophobic proteins on the inner membrane and are rate limiting for gene expression. We searched unsuccessfully in divergent budding yeasts for orthologs of the COX2- and COX3-specific translational activator genes, PET111, PET54, PET122, and PET494, by direct complementation. However, by screening for complementation of mutations in genes adjacent to the PET genes in S. cerevisiae, we obtained chromosomal segments containing highly diverged homologs of PET111 and PET122 from Saccharomyces kluyveri and of PET111 from Kluyveromyces lactis. All three of these genes failed to function in S. cerevisiae. We also found that the 5'-UTLs of the COX2 and COX3 mRNAs of S. kluyveri and K. lactis have little similarity to each other or to those of S. cerevisiae. To determine whether the PET111 and PET122 homologs carry out orthologous functions, we deleted them from the S. kluyveri genome and deleted PET111 from the K. lactis genome. The pet111 mutations in both species prevented COX2 translation, and the S. kluyveri pet122 mutation prevented COX3 translation. Thus, while the sequences of these translational activator proteins and their 5'-UTL targets are highly diverged, their mRNA-specific functions are orthologous.  相似文献   

10.
We used transformation of yeast mitochondria and homologous gene replacement to study features of the 613-base COX3 mRNA 5' untranslated leader (5'-UTL) required for translational activation by the protein products of the nuclear genes PET54, PET122, and PET494 in vivo. Elimination of the single AUG triplet in the 5'-UTL had no detectable effect on expression, indicating that activator proteins do not work by allowing ribosomes to bypass that AUG. Deletion of the entire 5'-UTL completely prevented translation, suggesting that the activator proteins do not function by antagonizing any other negative element in the 5'-UTL. Removal of the 15 terminal bases from the 5' end of the 5'-UTL did not block activator-dependent translation. The largest internal deletion that did not interfere with translation removed 125 bases from the upstream portion of the leader. However, two large deletions that blocked translation could be reverted to activator-dependent expression by secondary changes in the remaining 5'-UTL sequences, indicating that the original deletions had not removed the translational activator target but only deformed it. Taken together, the deletion mutations and revertants define a region of 151 bases (between positions -480 and -330 relative to the start codon) containing sequences that are sufficient for translational activation when modified slightly. Suppression of the respiratory phenotypes of two 5'-UTL mutations by overexpression of PET54, PET122, and PET494 indicated functional interactions between the leader and the three activator proteins. The mature COX3 mRNA is cleaved from a precursor immediately downstream of the preceding tRNAVal in a fashion resembling mRNA processing in vertebrate mitochondria. Our results indicate that the site of this cleavage in Saccharomyces cerevisiae is determined solely by the position of the tRNA.  相似文献   

11.
We have previously identified a protein with Mr approximately 40,000 (p40) that binds with high specificity and affinity to the 5'-untranslated leaders of mitochondrial mRNAs in yeast. Here we show that this protein is abundant, comprising about 0.4% of total mitochondrial protein. p40 is present in a cytoplasmic (rho degree) petite mutant that lacks mitochondrial protein synthesis and is therefore nuclear encoded. p40 can be detected by immunological techniques in cell lysates of several different pet mutants, specifically disturbed in the translation of individual mitochondrial mRNAs. It is thus not one of the translation factors defined by any of these mutations. In the case of a pet111 mutant, which is specifically blocked in the translation of COX2 mRNA, extracts still display COX2 mRNA binding activity, indicating that p40 complex formation in vitro is not dependent on the presence of PET111.  相似文献   

12.
13.
E Maicas  M Shago    J D Friesen 《Nucleic acids research》1990,18(19):5823-5828
The role of eukaryotic 5'-untranslated messenger RNA leaders is not entirely clear, since they share little sequence similarity among each other. The importance of the leader in determining the efficiency of translation initiation was addressed here by examining the polyribosome distribution of several leader-deletion alleles of the yeast tcm1 gene (coding for ribosomal protein L3). Shortening of this 22-nucleotide leader, or complete removal of it (the first nucleotide of the mRNA becoming the A of the translation initiation codon AUG) permitted translation, albeit reduced. Further deletion of as few as the first two nucleotides of the initiation codon leads to a substantial reduction in ribosome loading, which is compatible with inefficient initiation at the next downstream, out-of-frame, AUG triplet. A second measure of translation initiation was obtained by assaying qualitatively for the production of biologically active L3 protein using growth-resistance to trichodermin. This experiment indicates that ribosomes can recognize the correct initiation codon even in the complete absence of a leader. We conclude that the 5'-untranslated leader of the yeast tcm1 gene is not essential for accurate translation initiation, but enhances its efficiency.  相似文献   

14.
Nuclear mutations that inactivate the Saccharomyces cerevisiae gene PET127 dramatically increased the levels of mutant COX3 and COX2 mitochondrial mRNAs that were destabilized by mutations in their 5' untranslated leaders. The stabilizing effect of pet127 delta mutations occurred both in the presence and in the absence of translation. In addition, pet127 delta mutations had pleiotropic effects on the stability and 5' end processing of some wild-type mRNAs and the 15S rRNA but produced only a leaky nonrespiratory phenotype at 37 degrees C. Overexpression of PET127 completely blocked respiratory growth and caused cells to lose wild-type mitochondrial DNA, suggesting that too much Pet127p prevents mitochondrial gene expression. Epitope-tagged Pet127p was specifically located in mitochondria and associated with membranes. These findings suggest that Pet127p plays a role in RNA surveillance and/or RNA processing and that these functions may be membrane bound in yeast mitochondria.  相似文献   

15.
The Pet54p protein is an archetypical example of a dual functioning (‘moonlighting’) protein: it is required for translational activation of the COX3 mRNA and splicing of the aI5β group I intron in the COX1 pre-mRNA in Saccharomyces cerevisiae mitochondria (mt). Genetic and biochemical analyses in yeast are consistent with Pet54p forming a complex with other translational activators that, in an unknown way, associates with the 5′ untranslated leader (UTL) of COX3 mRNA. Likewise, genetic analysis suggests that Pet54p along with another distinct set of proteins facilitate splicing of the aI5β intron, but the function of Pet54 is, also, obscure. In particular, it remains unknown whether Pet54p is a primary RNA-binding protein that specifically recognizes the 5′ UTL and intron RNAs or whether its functional specificity is governed in other ways. Using recombinant protein, we show that Pet54p binds with high specificity and affinity to the aI5β intron and facilitates exon ligation in vitro. In addition, Pet54p binds with similar affinity to the COX3 5′ UTL RNA. Competition experiments show that the COX3 5′UTL and aI5β intron RNAs bind to the same or overlapping surface on Pet54p. Delineation of the Pet54p-binding sites by RNA deletions and RNase footprinting show that Pet54p binds across a similar length sequence in both RNAs. Alignment of the sequences shows significant (56%) similarity and overlap between the binding sites. Given that its role in splicing is likely an acquired function, these data support a model in which Pet54p's splicing function may have resulted from a fortuitous association with the aI5β intron. This association may have lead to the selection of Pet54p variants that increased the efficiency of aI5β splicing and provided a possible means to coregulate COX1 and COX3 expression.  相似文献   

16.
To examine normal and aberrant translation initiation in Saccharomyces cerevisiae mitochondria, we fused the synthetic mitochondrial reporter gene ARG8m to codon 91 of the COX2 coding sequence and inserted the chimeric gene into mitochondrial DNA (mtDNA). Translation of the cox2(1-91)::ARG8m mRNA yielded a fusion protein precursor that was processed to yield wild-type Arg8p. Thus mitochondrial translation could be monitored by the ability of mutant chimeric genes to complement a nuclear arg8 mutation. As expected, translation of the cox2(1-91)::ARG8m mRNA was dependent on the COX2 mRNA-specific activator PET111. We tested the ability of six triplets to function as initiation codons in both the cox2(1-91)::ARG8m reporter mRNA and the otherwise wild-type COX2 mRNA. Substitution of AUC, CCC or AAA for the initiation codon abolished detectable translation of both mRNAs, even when PET111 activity was increased. The failure of these mutant cox2(1-91)::ARG8m genes to yield Arg8p demonstrates that initiation at downstream AUG codons, such as COX2 codon 14, does not occur even when normal initiation is blocked. Three mutant triplets at the site of the initiation codon supported detectable translation, with efficiencies decreasing in the order GUG, AUU, AUA. Increased PET111 activity enhanced initiation at AUU and AUA codons. Comparisons of expression, at the level of accumulated product, of cox2(1-91)::ARG8m and COX2 carrying these mutant initiation codons revealed that very low-efficiency translation can provide enough Cox2p to sustain significant respiratory growth, presumably because Cox2p is efficiently assembled into stable cytochrome oxidase complexes.  相似文献   

17.
R. A. Voelker  J. Graves  W. Gibson    M. Eisenberg 《Genetics》1990,126(4):1071-1082
The locations of 16 mobile element insertions causing mutations at the Drosophila suppressor of sable [su(s)] locus were determined by restriction mapping and DNA sequencing of the junction sites. The transposons causing the mutations are: P element (5 alleles), gypsy (3 alleles), 17.6, HMS Beagle, springer, Delta 88, prygun, Stalker, and a new mobile element which was named roamer (2 alleles). Four P element insertions occur in 5' nontranslated leader sequences, while the fifth P element and all 11 non-P elements inserted into the 2053 nucleotide, 5'-most intron that is spliced from the 5' nontranslated leader approximately 100 nucleotides upstream of the translation start. Fifteen of the 16 mobile elements inserted within a approximately 1900 nucleotide region that contains seven 100-200-nucleotide long DNase I-hypersensitive subregions that alternate with DNase I-resistant intervals of similar lengths. The locations of these 15 insertion sites correlate well with the roughly estimated locations of five of the DNase I-hypersensitive subregions. These findings suggest that the features of chromatin structure that accompany gene activation may also make the DNA susceptible to insertion of mobile elements.  相似文献   

18.
Previous results indicated that translation of four mitochondrion-encoded genes and one nucleus-encoded gene (COX4) is repressed in mutants (pgs1Delta) of Saccharomyces cerevisiae lacking phosphatidylglycerol and cardiolipin. COX4 translation was studied here using a mitochondrially targeted green fluorescence protein (mtGFP) fused to the COX4 promoter and its 5' and 3' untranslated regions (UTRs). Lack of mtGFP expression independent of carbon source and strain background was established to be at the translational level. The translational defect was not due to deficiency of mitochondrial respiratory function but was rather caused directly by the lack of phosphatidylglycerol and cardiolipin in mitochondrial membranes. Reintroduction of a functional PGS1 gene under control of the ADH1 promoter restored phosphatidylglycerol synthesis and expression of mtGFP. Deletion analysis of the 5' UTR(COX4) revealed the presence of a 50-nucleotide fragment with two stem-loops as a cis-element inhibiting COX4 translation. Binding of a protein factor(s) specifically to this sequence was observed with cytoplasm from pgs1Delta but not PGS1 cells. Using HIS3 and lacZ as reporters, extragenic spontaneous recessive mutations that allowed expression of His3p and beta-galactosidase were isolated, which appeared to be loss-of-function mutations, suggesting that the genes mutated may encode the trans factors that bind to the cis element in pgs1Delta cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号