首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Peroxisome proliferator-activated receptor gamma (PPAR gamma) co-activator 1 (PGC-1) regulates glucose metabolism and energy expenditure and, thus, potentially insulin sensitivity. We examined the expression of PGC-1, PPAR gamma, insulin receptor substrate-1 (IRS-1), glucose transporter isoform-4 (GLUT-4), and mitochondrial uncoupling protein-1 (UCP-1) in adipose tissue and skeletal muscle from non-obese, non-diabetic insulin-resistant, and insulin-sensitive individuals. PGC-1, both mRNA and protein, was expressed in human adipose tissue and the expression was significantly reduced in insulin-resistant subjects. The expression of PGC-1 correlated with the mRNA levels of IRS-1, GLUT-4, and UCP-1 in adipose tissue. Furthermore, the adipose tissue expression of PGC-1 and IRS-1 correlated with insulin action in vivo. In contrast, no differential expression of PGC-1, GLUT-4, or IRS-1 was found in the skeletal muscle of insulin-resistant vs insulin-sensitive subjects. The findings suggest that PGC-1 may be involved in the differential gene expression and regulation between adipose tissue and skeletal muscle. The combined reduction of PGC-1 and insulin signaling molecules in adipose tissue implicates adipose tissue dysfunction which, in turn, can impair the systemic insulin response in the insulin-resistant subjects.  相似文献   

3.
4.
Role of adiponectin in human skeletal muscle bioenergetics   总被引:4,自引:0,他引:4  
Insulin resistance is associated with impaired skeletal muscle oxidation capacity and reduced mitochondrial number and function. Here, we report that adiponectin signaling regulates mitochondrial bioenergetics in skeletal muscle. Individuals with a family history of type 2 diabetes display skeletal muscle insulin resistance and mitochondrial dysfunction; adiponectin levels strongly correlate with mtDNA content. Knockout of the adiponectin gene in mice is associated with insulin resistance and low mitochondrial content and reduced mitochondrial enzyme activity in skeletal muscle. Adiponectin treatment of human myotubes in primary culture induces mitochondrial biogenesis, palmitate oxidation, and citrate synthase activity, and reduces the production of reactive oxygen species. The inhibition of adiponectin receptor expression by siRNA, or of AMPK by a pharmacological agent, blunts adiponectin induction of mitochondrial function. Our findings define a skeletal muscle pathway by which adiponectin increases mitochondrial number and function and exerts antidiabetic effects.  相似文献   

5.
Mitochondrial dysfunction is associated with insulin resistance. Although chicoric acid (CA) is known to have beneficial effects on insulin sensitivity, the involvement of mitochondrial function has not been elucidated yet. Here, we investigated the effect of CA on insulin resistance and mitochondrial dysfunction. In palmitate-induced insulin-resistant C2C12 myotubes, CA improved impaired glucose uptake and insulin signaling pathways, along with enhanced mitochondrial membrane potential and oxygen consumption. CA treatment in diet-induced obese mice ameliorated glucose tolerance and increased insulin sensitivity. CA treatment also recovered the dysregulated expression of glucose metabolism-related genes in the high-fat-fed mice. CA significantly increased the mitochondrial DNA content, citrate synthase, and ATP content, as well as the expression of genes related to mitochondrial biogenesis and oxidative phosphorylation in the liver and skeletal muscle in high-fat- fed obese mice. These findings suggested that CA attenuates insulin resistance and promotes insulin sensitivity by enhancing mitochondrial function.  相似文献   

6.
PGC-1alpha, a transcriptional coactivator involved in metabolism   总被引:1,自引:0,他引:1  
  相似文献   

7.
8.
9.
《BBA》2014,1837(2):270-276
Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells.  相似文献   

10.
Dimopoulos N  Watson M  Green C  Hundal HS 《FEBS letters》2007,581(24):4743-4748
Peroxisome proliferator-activated receptor-delta (PPARdelta) activation enhances skeletal muscle fatty acid oxidation and improves whole body glucose homeostasis and insulin sensitivity. Recently, GW501516, a selective PPARdelta agonist, was reported to increase glucose uptake in human skeletal myotubes by an AMPK-dependent mechanism that may contribute to the improved glucose tolerance. Here, we demonstrate that whilst GW501516 increases expression of PGC-1alpha and CPT-1 and stimulates fatty-acid oxidation in L6 myotubes, it fails to enhance insulin sensitivity, AMPK activity or glucose uptake and storage. Our findings exclude sarcolemmal glucose transport as a potential target for the therapeutic action of PPARdelta agonists in skeletal muscle.  相似文献   

11.
12.
13.
14.

Background

Intramyocellular lipid accumulation is strongly related to insulin resistance in humans, and we have shown that high glucose concentration induced de novo lipogenesis and insulin resistance in murin muscle cells. Alterations in Wnt signaling impact the balance between myogenic and adipogenic programs in myoblasts, partly due to the decrease of Wnt10b protein. As recent studies point towards a role for Wnt signaling in the pathogenesis of type 2 diabetes, we hypothesized that activation of Wnt signaling could play a crucial role in muscle insulin sensitivity.

Methodology/Principal Findings

Here we demonstrate that SREBP-1c and Wnt10b display inverse expression patterns during muscle ontogenesis and regeneration, as well as during satellite cells differentiation. The Wnt/β-catenin pathway was reactivated in contracting myotubes using siRNA mediated SREBP-1 knockdown, Wnt10b over-expression or inhibition of GSK-3β, whereas Wnt signaling was inhibited in myoblasts through silencing of Wnt10b. SREBP-1 knockdown was sufficient to induce Wnt10b protein expression in contracting myotubes and to activate the Wnt/β-catenin pathway. Conversely, silencing Wnt10b in myoblasts induced SREBP-1c protein expression, suggesting a reciprocal regulation. Stimulation of the Wnt/β-catenin pathway i) drastically decreased SREBP-1c protein and intramyocellular lipid deposition in myotubes; ii) increased basal glucose transport in both insulin-sensitive and insulin-resistant myotubes through a differential activation of Akt and AMPK pathways; iii) restored insulin sensitivity in insulin-resistant myotubes.

Conclusions/Significance

We conclude that activation of Wnt/β-catenin signaling in skeletal muscle cells improved insulin sensitivity by i) decreasing intramyocellular lipid deposition through downregulation of SREBP-1c; ii) increasing insulin effects through a differential activation of the Akt/PKB and AMPK pathways; iii) inhibiting the MAPK pathway. A crosstalk between these pathways and Wnt/β-catenin signaling in skeletal muscle opens the exciting possibility that organ-selective modulation of Wnt signaling might become an attractive therapeutic target in regenerative medicine and to treat obese and diabetic populations.  相似文献   

15.
16.
17.
Myogenesis is a crucial process governing skeletal muscle development and homeostasis. Differentiation of primitive myoblasts into mature myotubes requires a metabolic switch to support the increased energetic demand of contractile muscle. Skeletal myoblasts specifically shift from a highly glycolytic state to relying predominantly on oxidative phosphorylation (OXPHOS) upon differentiation. We have found that this phenomenon requires dramatic remodeling of the mitochondrial network involving both mitochondrial clearance and biogenesis. During early myogenic differentiation, autophagy is robustly upregulated and this coincides with DNM1L/DRP1 (dynamin 1-like)-mediated fragmentation and subsequent removal of mitochondria via SQSTM1 (sequestosome 1)-mediated mitophagy. Mitochondria are then repopulated via PPARGC1A/PGC-1α (peroxisome proliferator-activated receptor gamma, coactivator 1 alpha)-mediated biogenesis. Mitochondrial fusion protein OPA1 (optic atrophy 1 [autosomal dominant]) is then briskly upregulated, resulting in the reformation of mitochondrial networks. The final product is a myotube replete with new mitochondria. Respirometry reveals that the constituents of these newly established mitochondrial networks are better primed for OXPHOS and are more tightly coupled than those in myoblasts. Additionally, we have found that suppressing autophagy with various inhibitors during differentiation interferes with myogenic differentiation. Together these data highlight the integral role of autophagy and mitophagy in myogenic differentiation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号