首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: Experiments were performed to confirm that noradrenergic terminals regulate extracellular concentrations of dopamine (DA) in the frontal cortex of rats. The effects of 20 mg/kg 1-[2-[bis(4-fluorphenyl)methoxy]-ethyl]-4-(3-phenylpropyl)piperazine (GBR 12909), a selective inhibitor of DA uptake, and 2.5 mg/kg desipramine (DMI) on the extracellular concentrations of DA in the frontal cortex and striatum were studied in rats given 6-hydroxydopamine (6 µg/µl) bilaterally into the locus coeruleus to destroy noradrenergic terminals. GBR 12909 increased dialysate DA similarly in the striatum of vehicle and 6-hydroxydopamine-treated rats, whereas in the frontal cortex it raised DA concentrations only in lesioned animals. DMI raised extracellular DA concentrations in the frontal cortex but not in the striatum of controls. The effect of DMI on cortical DA was abolished by the 6-hydroxydopamine lesion. GBR 12909, at a subcutaneous dose of 20 mg/kg, further increased cortical dialysate DA in rats given DMI intraperitoneally at 20 mg/kg or through the probe at 10−5 mol/L. The data support the hypothesis of an important regulation of the extracellular concentrations of DA in the frontal cortex by noradrenergic terminals.  相似文献   

2.
Previous results suggest that extracellular dopamine (DA) in the rat cerebral cortex originates from dopaminergic and noradrenergic terminals. To further clarify this issue, dialysate DA, dihydroxyphenylacetic acid (DOPAC) and noradrenaline (NA) were measured both in the medial prefrontal cortex (mPFC) and in the occipital cortex (OCC), with dense and scarce dopaminergic projections, respectively. Moreover, the effect of the alpha2-adrenoceptor antagonist RS 79948 and the D2-receptor antagonist haloperidol on extracellular DA, DOPAC and NA was investigated. Extracellular DA and DOPAC concentrations in the OCC were 43% and 9%, respectively, those in the mPFC. Haloperidol (0.1 mg/kg i.p.) increased DA and DOPAC (by 35% and 150%, respectively) in the mPFC, but was ineffective in the OCC. In contrast, RS 79948 (1.5 mg/kg i.p.) increased NA, DA and DOPAC, both in the mPFC (by approximately 50%, 60% and 130%, respectively) and the OCC (by approximately 50%, 80% and 200%, respectively). Locally perfused, the DA transporter blocker GBR 12909 (10 micro m) was ineffective in either cortex, whereas desipramine (DMI, 100 micro m) markedly increased extracellular NA and DA in both cortices. The weak haloperidol effect on DA efflux was not enhanced after DA- and NA-transporter blockade, whereas after DMI, RS 79948 markedly increased extracellular NA, and especially DA and DOPAC in both cortices. The results support the hypothesis that most extracellular DA in the cortex is co-released with NA from noradrenergic terminals, such co-release being primarily controlled by alpha2-adrenoceptors.  相似文献   

3.
H C Jackson  I J Griffin  D J Nutt 《Life sciences》1992,50(19):PL155-PL159
In the present study we have investigated the effects of the alpha 2-adrenoceptor antagonist idazoxan and its 2-ethoxy derivative RX811059 on the locomotor activity induced by cocaine in mice. The stimulant effects of cocaine (15 mg/kg i.p.) were significantly antagonised by idazoxan (3 mg/kg i.p.) and RX811059 (1 mg/kg i.p.) and also initially suppressed by idazoxan (1 mg/kg i.p.) and RX811059 (0.3 mg/kg i.p.). The alpha 2-adrenoceptor antagonists had no effect on locomotion when given alone. These results suggest that noradrenergic mechanisms may play a role in the stimulant effects of cocaine and that alpha 2-adrenoceptor antagonists like idazoxan may be of some benefit in the clinical management of cocaine abuse.  相似文献   

4.
Peng WH  Lo KL  Lee YH  Hung TH  Lin YC 《Life sciences》2007,81(11):933-938
This study investigated the effect of berberine (BER) in the mouse forced swim test (FST) and in the tail suspension test (TST), two models predictive of antidepressant activity. We also investigated the antidepressant-like mechanism of BER by the combination of the desipramine [DES, an inhibitor of reuptake of noradrenaline (NA) and serotonin (5-HT)], maprotiline (MAP, selective NA reuptake inhibitor), fluoxetine (FLU, selective 5-HT reuptake inhibitor) and moclobemide [MOC, monoamine oxidase (MAO) A inhibitor). Then we further measured the levels of monoamines [NA, dopamine (DA) and 5-HT) in mice striatum, hippocampus and frontal cortex. The results show that BER (10, 20 mg/kg, p.o.), significantly reduced the immobility time during the FST and the TST. The immobility time after treatment with BER (20 mg/kg, p.o.) in FST was augmented by DES, FLU and MOC, and not affected by MAP. Furthermore, BER (20 mg/kg, p.o.) increased NA and 5-HT levels in the hippocampus and frontal cortex. Our findings support the view that BER exerts antidepressant-like effect. The antidepressant-like mechanism of BER may be related to the increase in NA and 5-HT levels in the hippocampus and frontal cortex.  相似文献   

5.
Because the use of monoamine reuptake inhibitors as weight-reducing agents is limited by adverse effects, novel antiobesity drugs are needed. We studied acute effects of the noradrenaline (NA) and serotonin (5-HT) reuptake inhibitor sibutramine (SIB), alone and after pretreatment with α1- and α2-adrenoceptor (AR), and 5-HT1/2/7, 5-HT1B and 5-HT2C receptor antagonists in order to determine which ARs and 5-HT receptors act downstream of SIB on feeding and locomotion. Acute effects on caloric and water intake, meal microstructure and locomotion were assessed, using an automated weighing system and telemetry in male rats with restricted 18-h access to Western style diet. SIB 3 mg/kg reduced meal size and frequency, which suggests enhanced within- and postmeal satiety. Imiloxan (α2B-AR), WB4101 (α1-AR), SB-224289 (5-HT1B), and modestly BRL 44408 (α2A/D-AR) attenuated SIB's effect on meal size, suggesting that α2B- and α1-ARs and 5-HT1B receptors mediate within-meal satiety, with a modest role for α2A/D-ARs. Only prazosin (α1/2B/2C-AR) counteracted SIB's effect on meal frequency. At 3 mg/kg, SIB modestly increased locomotion. This effect was blocked by metergoline (5-HT1/2/7), WB4101 (α1-AR), and RX821002 (α2-AR). Interestingly, the α2-AR antagonists atipamezole and RX821002 enhanced SIB's effect on caloric intake, probably due to inverse agonistic actions at α2A-autoreceptors that further enhanced release of NA that regulates caloric intake. Thus, an inverse agonist of presynaptic α2A-ARs might beneficially enhance SIB's weight-reducing effect and offer novel treatment for obesity. All in all, the present data supports the ARs and 5-HT receptors involved in the effects of SIB on different aspects of caloric intake and locomotion.  相似文献   

6.
Y H Huang 《Life sciences》1979,25(9):739-746
The tricyclic antidepressant drug desipramine (DMI) produces multiple effects on noradrenergic nervous systems. This study attempted to determine the net outcome of these effects by evaluating the firing rate of noradrenergic postsynaptic neurons. Hippocampal pyramidal cells inhibited by stimulation of the nucleus locus coeruleus were used as noradrenergic postsynaptic neurons. An intraperitoneal injection of DMI (5 or 10 mg/kg) inhibited 14 of 23 cells studied and an intravenous injection (0.3 or 0.6 mg/kg) supressed 16 of 16 cells studied. The inhibition was pronounced and lasted 18 min (i.p.) or 8 min (i.v.). It was blocked by either locus coeruleus lesions or pretreatment with reserpine and α-methyl-p-tyrosine, which suggests that the inhibition was mediated by norepinephrine. These results indicate that the net effect of DMI on noradrenergic systems is facilitation.  相似文献   

7.
The selective NK(1) receptor antagonist, GR205,171 (2.5-40.0 mg/kg, i.p.), dose-dependently elevated dialysate levels of noradrenaline (NA), but not serotonin (5-HT), in the frontal cortex of freely moving rats. This action was exerted stereospecifically inasmuch as its less active isomer, GR226,206, was ineffective. In the dorsal hippocampus, GR205,171 (but not GR226,206) also significantly increased dialysate levels of NA, whereas levels of 5-HT were unaffected. Further, in anaesthetized rats, GR205,171 dose-dependently (1.0-4.0 mg/kg, i.v.) increased the firing rate of adrenergic perikarya in the locus coeruleus. In contrast, their activity was not modified by GR226,206. These findings indicate that selective blockade of NK(1) receptors enhances the activity of ascending adrenergic pathways in rats. Adrenergic mechanisms may, thus, be involved in the potential antidepressant and other functional properties of NK(1) receptor antagonists.  相似文献   

8.
In vivo microdialysis in conscious rats was used to examine the effect of clozapine on serotonin (5-hydroxytryptamine, 5-HT) efflux in the prefrontal cortex and dorsal raphe nucleus and dopamine efflux in the prefrontal cortex. Both systemic and local administration of clozapine (systemic, 10 or 20 mg/kg, i.p.; local, 100 microM) increased 5-HT efflux in the dorsal raphe. However, in the prefrontal cortex, dialysate 5-HT increased when clozapine (100 microM) was administered through the probe, while no effect was observed when it was administered systemically. By pretreatment with the selective 5-HT1A receptor antagonist p-MPPI (3 mg/kg, i.p.), systemic treatment of clozapine (10 mg/kg, i.p.) significantly increased 5-HT efflux in the prefrontal cortex. This result suggests that the ability of clozapine to enhance the extracellular concentrations of 5-HT in the dorsal raphe attenuates this drug's effect in the frontal cortex, probably through the stimulation of 5-HT1A somatodendritic autoreceptors in the dorsal raphe. We also found that pretreatment with p-MPPI (3 mg/kg, i.p.) attenuated by 45% the rise in cortical dopamine levels induced by clozapine (10 mg/kg, i.p.). These findings imply that the reduction in serotonergic input from the dorsal raphe nucleus induced by clozapine could lead to an increase in dopamine release in the prefrontal cortex.  相似文献   

9.
Venlafaxine is recognised as an effective treatment for depression and is known to inhibit the reuptake of serotonin (5-HT) and noradrenaline (NA). Another antidepressant, bupropion, acts to inhibit dopamine (DA) and NA reuptake and is commonly co-administered with other antidepressants to improve the efficacy of the antidepressant effect. The present study was designed to investigate the acute effect of combining the 2 drugs on extracellular levels of 5-HT, DA, and NA in rat frontal cortex using brain microdialysis, with the drugs being administered by intraperitoneal injection (i.p). Bupropion (10 mg/kg body mass, i.p.) alone had no effect on extracellular 5-HT levels, whereas venlafaxine (10 mg/kg, i.p.) alone significantly elevated extracellular 5-HT over basal values. As expected, bupropion alone elevated extracellular dopamine above basal values at 40 min post-drug administration, and this effect lasted for a further 2 h. Venlafaxine alone did not statistically elevate extracellular dopamine. The co-administration of venlafaxine with bupropion resulted in a dramatic increase in extracellular dopamine, and this effect was significantly greater than that seen with bupropion alone. In the frontal cortex, NA was elevated by bupropion alone and venlafaxine alone, relative to the control animals. The combination of bupropion and venlafaxine resulted in a marked elevation of NA.  相似文献   

10.
A 7-day treatment with 20 mg/kg/day desipramine reduced the immobility time in the behavioral "despair" test in rats. The effect of DMI was antagonized by sulpiride (100 mg/kg i.p.), metoclopramide (20 mg/kg i.p.) and clopazine (20 mg/kg i.p.) but not by haloperidol (0.5 mg/kg i.p.) or chlorpromazine (5 mg/kg i.p.). Alpha-adrenoreceptor blockers (prazosin 3 mg/kg s.c.; aceperone 10 mg/kg i.p.; azapetine 24 mg/kg s.c.; phentolamine 20 mg/kg i.p.), dl-propranolol (5 mg/kg i.p.) and clonidine (0.1 mg/kg i.p.) failed to modify the anti-immobility effect of DMI. The data suggest that a particular subtype of dopamine receptors is involved in the anti-immobility effect of a 7-day treatment with DMI in the behavioral "despair" test in rats.  相似文献   

11.
Noradrenergic and corticotropin-releasing factor (CRF) neuronal systems within the brain have been implicated in stress and anxiety. Synaptic release of cerebral norepinephrine (NE) is increased during stress, and following intracerebral CRF administration. Benzodiazepines are commonly used anxiolytic drugs but information on their effects on the stress- and CRF-related release of NE is limited. We have used in vivo microdialysis to test the effects of the benzodiazepine, chlordiazepoxide (CDP) on the noradrenergic responses to footshock and intracerebroventricular CRF in the medial hypothalamus and the medial prefrontal cortex (PFM) of freely moving rats. Footshock (60 x 0.1-0.2 mA shocks in 20 min) significantly increased microdialysate concentrations of NE in the first sample collected after initiating the footshock. In the hypothalamus, microdialysate NE was augmented 64% above baseline. A second footshock session (100 min after the first footshock) increased microdialysate NE to 313% of the baseline. Thus the noradrenergic responses to footshock were enhanced by preceding footshocks. CRF (100 ng) administered into the locus coeruleus (LC) almost tripled microdialysate concentrations of NE in the PFM. CDP (5mg/kg, i.p.) had no statistically significant effects on the basal dialysate concentrations of NE, but it significantly attenuated both footshock- and CRF-induced increases in dialysate NE. CDP may exert a direct inhibitory effect on the noradrenergic neurons, alter the input to LC noradrenergic neurons, or alter the ability of CRF to activate the LC noradrenergic system.  相似文献   

12.
Evaluation of a local activity of the sympathetic system on the basis of norepinephrine (NE) level in the blood of myocardial vessels depends on at least three processes: NE release by sympathetic neurons, its reuptake and spillover of NE into the blood. The relations between these processes are different in various organs. Direct investigations of changes in the myocardial NE level under the effect of reuptake blockade by desmethylimipramine (DMI) were performed after appearance of the microdialysis technology. In this work the effects of local (through microdialysis membrane) and systemic administration of DMI on the NE release in a rat myocardium, were compared. Local DMI delivery increased myocardial NE level to 153 +/- 13% of the control level (0.17 +/- 0.026 ng/ml dialysate). NE concentration increased to 582 +/- 84% of control as a result of i.m. administration of 5 mg/kg DMI. No changes of the NE level in the venous blood were registered after systemic DMI. It is suggested that a relatively weak effect of local DMI is determined by saturation of DMI receptors adjacent to the probe and/or progressive diminution of the DMI effect with an increasing of the distance from the probe. Effect of systemic DMI administration depends on uniform blockade of all myocardial DMI receptors as well as the DMI influence on higher levels of the sympathetic system.  相似文献   

13.
Abstract: The effect of (±)-8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT), a selective serotonin 5-HT1A agonist, on levels of extracellular norepinephrine (NE), dopamine (DA), and 5-HT (measured simultaneously) was investigated by microdialysis in the ventral tegmental area (VTA) of freely moving rats, and their behavioral activity was monitored. At 50 µg/kg s.c., 8-OH-DPAT reduced 5-HT levels but enhanced NE and DA levels in VTA dialysate. These effects were not altered by pretreatment with systemic idazoxan (5 mg/kg i.p.), a selective α2 antagonist, or local sulpiride (10 µ M ), a selective D2/D3 antagonist. At 500 µg/kg s.c., 8-OH-DPAT further enhanced or more persistently reduced dialysate NE or 5-HT content but had little effect on dialysate DA content. Its DA level-increasing effect could be seen dramatically with local infusion of cocaine (30 µ M ) and, to a lesser extent, sulpiride (10 µ M ). Depletion of endogenous 5-HT with p -chlorophenylalanine attenuated both the 5-HT level-reducing and DA level-enhancing effects of 8-OH-DPAT without affecting its maximal NE effect and the locomotor-stimulatory effect. Partial depletion of endogenous NE with N -(2-chloroethyl)- N -ethyl-2-bromobenzylamine failed to change the monoamine response but diminished the locomotion induced by 8-OH-DPAT. These results suggested that (a) the low dose of 8-OH-DPAT may act at presynaptic 5-HT1A receptors to modulate 5-HT and DA release, while acting at postsynaptic 5-HT1A receptors to modulate NE release; (b) the high dose of 8-OH-DPAT may activate D2 receptors to offset its DA level-increasing effect; and (c) the locomotor-stimulatory effect of 8-OH-DPAT might be mediated primarily by postsynaptic 5-HT1A receptors and the NE system.  相似文献   

14.
Abstract: In this study, we examined the influence of blockade of serotonin (5-HT)1A and/or 5-HT1B autoreceptors on the fluoxetine-induced increase in dialysate levels of 5-HT as compared with dopamine (DA) and noradrenaline (NAD) in single samples of the frontal cortex (FCx) of freely moving rats. Fluoxetine (10.0 mg/kg, s.c.) elicited a twofold increase in dialysate levels of 5-HT relative to baseline values. The selective 5-HT1A antagonist WAY 100,635 (0.16 mg/kg, s.c.) did not influence 5-HT release alone but doubled the influence of fluoxetine on basal levels. Similarly, the selective 5-HT1B/1D antagonist GR 127,935 (2.5 mg/kg, s.c.) did not alter basal 5-HT levels alone and doubled the fluoxetine-induced increase in 5-HT levels. Combined administration of WAY 100,635 and GR 127,935 elicited an (at least) additive rise in the fluoxetine-induced increase in 5-HT levels to eightfold basal values, without modifying resting 5-HT levels. These changes were selective for 5-HT inasmuch as the parallel (twofold) increase in DA and NAD levels provoked by fluoxetine was not potentiated. The present data demonstrate that combined blockade of 5-HT1A and 5-HT1B autoreceptors markedly and selectively potentiates the fluoxetine-induced increase in dialysate levels of 5-HT versus DA and NAD in the FCx of freely moving rats. These observations suggest that 5-HT1A/1B antagonism may represent a novel strategy for the improvement in the therapeutic profile of 5-HT reuptake inhibitor antidepressant agents and that 5-HT may be primarily involved in such interactions.  相似文献   

15.
Inhibition of locus coeruleus neuronal activity by beta-phenylethylamine   总被引:1,自引:0,他引:1  
The effect of beta-phenylethylamine (PEA) on brain noradrenaline (NA) neurons in the rat locus coeruleus (LC) was analyzed using single unit recording techniques including microiontophoretic methodology. Systemic injection of low doses of PEA consistently produced an instantaneous and dose-dependent inhibition of firing rate of the LC neurons. The effect was strongly antagonized by administration of the alpha 2-receptor antagonist yohimbine (1 mg/kg, i.v.) or by depletion of endogenous stores of NA by pretreatment with reserpine (10 mg/kg, i.p., 6 h), but unaffected by inhibition of tyrosine hydroxylase (alpha-met-hyl-p-tyrosine (alpha-MT), 250 mg/kg, i.p., 30 min). In contrast, the inhibitory effect of PEA on the LC neurons was strongly potentiated by pretreatment with the selective monoamine oxidase (MAO) - B inhibitor pargyline (2 mg/kg, i.p., 1 h), but, unexpectedly, also by pretreatment with the MAO-A selective inhibitors clorgyline (2 mg/kg, i.p., 1 h) or FLA 336 (2 mg/kg, i.p., 1 h). When microiontophoretically applied directly onto the LC neurons, PEA produced inhibition of a majority of the NA neurons. This action was prevented by intravenous injection of yohimbine (2.5 mg/kg). The results suggests that the action of PEA on NA neurons in the LC is an indirect effect, requiring availability of a reserpine-sensitive storage pool of NA, and mediated via activation of central alpha 2-receptors within the LC.  相似文献   

16.
The medial forebrain bundle (MFB) was partially lesioned with 6-hydroxydopamine (6-OHDA) in order to investigate the effect of deficient central noradrenergic regulation on thyrotropin (TSH) secretion in the rat. 6-OHDA injection into the MFB significantly reduced the noradrenaline (NA), dopamine (DA) and serotonin (5-HT) content of the whole hypothalamus. NA and 5-HT concentrations were also significantly decreased in the paraventricular nucleus (PVN). The MFB lesion did not affect the clonidine (250 g/kg, i.p.) induced stimulation of TSH release or the isoproterenol (1 mg/kg i.p.) induced decrease in TSH levels. Thyrotropin releasing hormone (TRH, 5 g/kg i.v.) caused a similar significant stimulation of TSH secretion in lesioned and non-lesioned rats. The present results do not support the hypothesis that the blunted TSH response to TRH observed in depressed patients results from a deficiency in noradrenergic neurotransmission.  相似文献   

17.
Abstract: A serotonin (5-HT)1A receptor partial agonist, buspirone, potentiates the clinical antidepressant properties of 5-HT reuptake inhibitors (SSRIs). Herein, we examined the interaction of buspirone with two SSRIs, duloxetine and fluoxetine, on extra-cellular levels of 5-HT, dopamine (DA), and noradrenaline (NAD) in single dialysate samples of freely moving rats. Duloxetine (5.0 mg/kg, s.c.) and fluoxetine (10.0 mg/kg, s.c.) increased dialysate levels of DA (65 and 60% vs. basal values, respectively), NAD (400 and 90%, respectively), and 5-HT (130 and 110%, respectively) in the frontal cortex (FCX). Buspirone (2.5 mg/kg, s.c.) similarly elevated levels of DA (100%) and NAD (160%) but reduced those of 5-HT (−50%). Administered with buspirone, the ability of duloxetine and fluoxetine to increase 5-HT levels was transiently inhibited (over 60 min), although by the end of sampling (180 min) their actions were fully expressed. In contrast, buspirone markedly and synergistically facilitated the elevation in DA levels elicited by duloxetine (550%) and fluoxetine (240%). Furthermore, buspirone potentiated the induction of NAD levels by duloxetine (750%) and fluoxetine (350%). These data suggest that a reinforcement in the influence of SSRIs on DA and, possibly, NAD but not 5-HT release in FCX may contribute to their increased antidepressant activity in the presence of buspirone. More generally, they support the hypothesis that a reinforcement in dopaminergic transmission in the FCX contributes to the actions of SSRIs and other antidepressant drugs.  相似文献   

18.
Abstract: Milnacipran, a dual noradrenaline (NA) and serotonin (5-hydroxytryptamine, 5-HT) uptake inhibitor, increased extracellular levels of NA and 5-HT in hypothalamus of freely moving guinea pigs as measured by microdialysis. The basal levels of both monoamines, which were tetrodotoxin sensitive, were increased in a dose-dependent manner and to a similar extent after the intraperitoneal administration of milnacipran (10 and 40 mg/kg i.p.). Levels of the NA metabolite 4-hydroxy-3-methoxyphenylglycol (MHPG) were decreased by milnacipran at 10 and 40 mg/kg i.p., whereas those of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) showed no effect. Subcutaneous injection of 5-HT1A and β-adrenergic receptor antagonist (−)-pindolol alone, at 10 mg/kg, had no effect on the extracellular levels of NA or 5-HT. The concomitant administration of (−)-pindolol (10 mg/kg s.c.) with milnacipran (10 mg/kg i.p.) increased severalfold the effect of milnacipran on the extracellular levels of NA and 5-HT. These results indicate that milnacipran, by blocking the uptake of NA and 5-HT, increases virtually equipotently the extracellular levels of NA and 5-HT, confirming previous in vitro studies. In addition, the antagonism of 5-HT1A autoreceptors by (−)-pindolol potentiates the action of milnacipran on both NA and 5-HT systems, without modifying the ratio of these activities.  相似文献   

19.
Xylazine hydrochloride was used as the sole immobilizing agent in moose and caribou. The animals were free-ranging and immobilization was accomplished from a helicopter using powered darts. Following a period of immobilization during which radiotelemetry collars were fitted, the animals were revived using idazoxan (RX 781094) or its methoxy analogue RX 821002. Xylazine was administered at dose rates of approximately 3.0 mg/kg and 5.0 mg/kg to the moose and caribou, respectively. Moose received 430 +/- 27 mg of xylazine and a mean dose of 10 mg idazoxan (RX 781094). Caribou received 485 +/- 30 mg xylazine and a mean dose of 4 mg idazoxan (RX 821002). This technique gave adequate immobilization with rapid recovery of consciousness in both species.  相似文献   

20.
In the present study we have investigated the effects of compounds which increase synaptic levels of noradrenaline on cocaine-induced seizures and lethality in mice. The noradrenaline uptake blocker desipramine (0.3, 3, 30 mg/kg i.p.; 1h pretreatment) and the alpha 2-antagonists idazoxan (0.05, 0.5, 5 mg/kg i.p.; 15 min) and RX811059A (0.01, 0.1, 1 mg/kg i.p.; 15 min) neither reduced nor increased the number of animals having convulsions in the 10 min following administration of cocaine (45, 60 mg/kg i.p.). None of these drugs increased lethality when assessed 10 minutes after 60 mg/kg cocaine and the alpha 2-antagonists did not protect against the lethal effects of a 90 mg/kg dose. On the other hand, desipramine significantly reduced the number of animals dying after this high dose of cocaine. These results suggest that noradrenergic mechanisms do not promote cocaine-induced convulsions and lethality - an important observation in light of the growing use of desipramine for initiation of abstinence in cocaine-dependent outpatients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号