首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Murine embryonic stem (ES) cells are cell lines established from blastocyst which can contribute to all adult tissues, including the germ-cell lineage, after reincorporation into the normal embryo. ES cell pluripotentiality is preserved in culture in the presence of LIF. LIF withdrawal induces ES cell differentiation to nervous, myocardial, endothelial and hematopoietic tissues. The model of murine ES cell hematopoietic differentiation is of major interest because ES cells are non transformed cell lines and the consequences of genomic manipulations of these cells are directly measurable on a hierarchy of synchronized in vitro ES cell-derived hematopoietic cell populations. These include the putative hemangioblast (which represents the emergence of both hematopoietic and endothelial tissues during development), myeloid progenitors and mature stages of myeloid lineages. Human ES cell lines have been recently derived from human blastocyst in the USA. Their manipulation in vitro should be authorized in France in a near future with the possibility of developing a model of human hematopoietic differentiation. This allows to envisage in the future the use of ES cells as a source of human hematopoietic cells.  相似文献   

2.
3.
4.
Ischemic diseases are characterized by the presence of pro-apoptotic stimuli, which initiate a cascade of processes that lead to cell injury and death. Several molecules and events represent detectable indicators of the different stages of apoptosis. Among these indicators is phosphatidylserine (PS) translocation from the inner to the outer leaflet of the plasma membrane, which can be detected by annexinV (ANXA5) conjugation. This is a widely used in vivo and in vitro assay marking the early stages of apoptosis. We report here on an original method that employs PS-ANXA5 conjugation to target stem cells to apoptotic cells. Mesenchymal stem cells (MSCs) from GFP-positive transgenic rats were biotinylated on membrane surfaces with sulfosuccinimidyl-6-(biotinamido) hexanoate (sulfo-NHS-LC-biot) and then bound to avidin. The avidin-biotinylated MSCs were labeled with biotin conjugated ANXA5. Bovine aortic endothelial cells (BAE-1 cells) were exposed to UVC to induce caspasedependent apoptosis. Finally, we tested the ability of ANXA5-labeled MSCs to bind BAE-1 apoptotic cells: suspended ANXA5-labeled MSCs were seeded for 1 hour on a monolayer of UV-treated or control BAE-1 cells. After washing, the number of MSCs bound to BAE-1 cells was evaluated by confocal microscopy. Statistical analysis demonstrated a significant increase in the number of MSCs tagged to apoptotic BAE-1 cells. Therefore, stem cell ANXA5 tagging via biotin-avidin bridges could be a straightforward method of improving homing to apoptotic tissues. A. Gerasimou, R. Ramella and A. Brero contributed equally to this paper.  相似文献   

5.
Transdifferentiation of mouse BM cells into hepatocyte-like cells   总被引:6,自引:0,他引:6  
Chen Y  Dong XJ  Zhang GR  Shao JZ  Xiang LX 《Cytotherapy》2006,8(4):381-389
BACKGROUND: During the past few years multiple studies have revealed that adult stem cells, including BM origin stem cells, can be transdifferentiated into various cell types, including hepatocyte-like cells, under proper treatments or in a suitable microenvironment. However, little is known about the mechanism of the transdifferentiation, and the treatments employed seem to be very complicated and require simplification. It is important to determine the suitable conditions in which BM cells would be efficiently differentiated into hepatocytes. METHODS: Mouse BM cells were isolated from femurs and tibias and cultured in IMDM supplemented with 10% FBS. Hepatic differentiation was induced in a differentiation medium containing 20 ng/mL HGF, 10 ng/mL FGF-4, 10 ng/mL Oncostatin M (OSM) and different concentrations of liver-injured mouse sera. The differentiated hepatic cells were characterized by the expression of liver-associated mRNA and proteins and morphologic and functional features. RESULTS: BM cell-derived polygonal cell colonies appeared after several days of culture, and these hepatocyte-like cells expressed AFP, HNF-3beta, CK19, CK18, ALB, TAT and G-6-Pase at mRNA and protein levels, and the cells also had some hepatic cellular functions, such as glycogen storage and urea production. Interestingly, suitable concentrations of sera from liver-injured mice added to this system showed strong stimulation on the in vitro transdifferentiation of mouse BM cells into hepatocytes. DISCUSSION: In the present study we have established an effective hepatic differentiation system by a combination of HGF, FGF-4, OSM and liver-injured mouse sera in vitro. Accordingly, it will be a useful resource not only for understanding the mechanisms of transdifferentiation but also for efficient amplification of hepatocyte progenitor cells of BM origin.  相似文献   

6.
Progenitor cells of the testosterone-producing Leydig cells revealed   总被引:1,自引:0,他引:1  
The cells responsible for production of the male sex hormone testosterone, the Leydig cells of the testis, are post-mitotic cells with neuroendocrine characteristics. Their origin during ontogeny and regeneration processes is still a matter of debate. Here, we show that cells of testicular blood vessels, namely vascular smooth muscle cells and pericytes, are the progenitors of Leydig cells. Resembling stem cells of the nervous system, the Leydig cell progenitors are characterized by the expression of nestin. Using an in vivo model to induce and monitor the synchronized generation of a completely new Leydig cell population in adult rats, we demonstrate specific proliferation of vascular progenitors and their subsequent transdifferentiation into steroidogenic Leydig cells which, in addition, rapidly acquire neuronal and glial properties. These findings, shown to be representative also for ontogenetic Leydig cell formation and for the human testis, provide further evidence that cellular components of blood vessels can act as progenitor cells for organogenesis and repair.  相似文献   

7.
Phosphatidylserine (PS) was exposed at the surface of human umbilical vein endothelial cells (HUVECs) and cultured cell lines by agonists that increase cytosolic Ca(2+), and factors governing the adhesion of T cells to the treated cells were investigated. Thrombin, ionophore A23187 and the Ca(2+)-ATPase inhibitor 2, 5-di-tert-butyl-1,4-benzohydroquinone each induced a PS-dependent adhesion of Jurkat T cells. A23187, which was the most effective agonist in releasing PS-bearing microvesicles, was the least effective in inducing the PS-dependent adhesion of Jurkat cells. Treatment of ECV304 and EA.hy926 cells with EGTA, followed by a return to normal medium, resulted in an influx of Ca(2+) and an increase in adhering Jurkat cells. Oxidised low-density lipoprotein induced a procoagulant response in cultured ECV304 cells and increased the number of adhering Jurkat cells, but adhesion was not inhibited by pretreating ECV304 cells with annexin V. PS was not significantly exposed on untreated Jurkat cells, as determined by flow cytometry with annexin V-FITC. However, after adhesion to thrombin-treated ECV304 cells for 10 min followed by detachment in 1 mM EDTA, there was a marked exposure of PS on the Jurkat cells. Binding of annexin V-FITC to the detached cells was inhibited by pretreating them with unlabelled annexin V. Contact with thrombin-treated ECV304 cells thus induced the exposure of PS on Jurkat cells and, as Jurkat cells were unable to adhere to thrombin-treated ECV304 cells in the presence of EGTA, the adhesion of the two cell types may involve a Ca(2+) bridge between PS on both cell surfaces. The number of T cells from normal, human peripheral blood that adhered to ECV304 cells was not increased by treating the latter with thrombin. However, findings made with several T cell lines were generally, but not completely, consistent with the possibility that adhesion to surface PS on endothelial cells may be a feature of T cells that express both CD4(+) and CD8(+) antigens. Possible implications for PS-dependent adhesion of T cells to endothelial cells in metastasis, and early in atherogenesis, are discussed.  相似文献   

8.
胚胎干细胞向造血细胞分化研究   总被引:2,自引:0,他引:2  
刘革修  张洹 《生命科学》2003,15(1):21-25
胚胎干(embryonic stem,ES)细胞是来源于囊胚的内细胞团(inner cell mass,ICM),具有发育的全能性或多能性,能嵌合到早期胚胎,在体内可以参与各种组织发育甚至包括生殖细胞;在体外分化培养条件下,可以顺序分化出各种组织细胞,与体内完整胚胎发育过程相符合,而且可以通过调节ES细胞某些基因的表达而调节其分化。因此,ES细胞是研究哺乳动物早期胚胎发育、细胞分化及其关键基因鉴定的理想模型。另外,胚胎生殖脊(embryonic germ,EG)细胞系也具有同样的生物学特性,它是由早期胚胎的原始生殖脊(primordial germ,PG)细胞建株而来。最近研究显示:ES细胞在体外不但可以分化为所有造血细胞系,而且还可以分化为具有长期增殖能力的造血干细胞。作者就胚胎干细胞向造血细胞和造血干细胞分化及其诱导因子和调控基因的表达作一综述。  相似文献   

9.
10.
Recently much effort has resulted in papers on how stem cells can be generated from adult tissues in mice, but the salamanders do this routinely. Salamanders can regenerate most of their body parts, such as limbs, eyes, jaw, brain (and spinal cord), heart, etc. Regeneration in salamanders starts by dedifferentiation of the terminally differentiated tissues at the site of injury. The dedifferentiated cells can then differentiate to reconstitute the lost tissues. This transdifferentiation in an adult animal is unprecedented among vertebrates and does not involve recruitment of stem cells. One of the ideas is that such reprogramming of terminally differentiated cells might involve mechanisms that are similar to the maintenance of embryonic stem cells. In the stem cell field much emphasis has been recently given to the reprogramming of adult cells (such as skin fibroblasts) to revert to ES or pluripotent stem cells. It is our conviction that generation of dedifferentiated cells in salamanders and stem cells, such as the ones seen in repair in mammals share molecular signatures. This mini review will discuss these issues and ideas that could unite the stem cell biology with the classical regeneration models.  相似文献   

11.
Arase H  Shiratori I 《Uirusu》2004,54(2):153-160
NK cells show cytotoxicity against virus-infected cells and tumor cells and play an important role in host defense. Although mecheanism of target cell recognition by NK cells have been unclear for a long time, it has recently been elucidated that certain NK cell receptors specifically recognize virus products. Furthermore, expression pattern of NK cell receptors, which consist of activating and inhibitory receptors, determines susceptibility to virus-infection. Here, we review recent progress of mechanism of recognition of virus-infected by NK cells.  相似文献   

12.
Human antibody-forming cells were demonstrated by a plaque in agar technique following in vitro stimulation with either pokeweed mitogen or Cowan I strain of protein A-positive Staphylococcus aureus bacteria. We evaluated the effects on this antibody formation caused by the addition of cells which had been stimulated with PH A or Con A. Both Con A and PHA cells harvested after 3 days showed strong inhibition of pokeweed-induced plaque formation. The majority of the suppression could be accounted for by a blast fraction separated on 1g sedimentation gradients from the Con A or PHA cultures. Small cells from such cultures showed inhibition of PFC when added at high ratios (1:2), but this suppressive activity diluted out much more rapidly than that of the blast cells. No helper activity was noted with either small cells or blasts. Our studies indicate a T-cell blast as the suppressive fraction in Con A- or PHA-stimulated human lymphoid cells. While this T-cell suppression applies to T-dependent responses such as antibody stimulation with pokeweed mitogen, it does not have a substantial effect on Cowan I-induced plaque-forming responses. The finding that Cowan I-induced plaques could not be inhibited by Con A or PHA blasts indicates the T independence of this response.  相似文献   

13.
Apoptosis is characterized by degradation of cell components but plasma membrane remains intact. Apoptotic microtubule network (AMN) is organized during apoptosis forming a cortical structure beneath plasma membrane that maintains plasma membrane integrity. Apoptotic cells are also characterized by high reactive oxygen species (ROS) production that can be potentially harmful for the cell. The aim of this study was to develop a method that allows stabilizing apoptotic cells for diagnostic and therapeutic applications. By using a cocktail composed of taxol (a microtubule stabilizer), Zn2+ (a caspase inhibitor) and coenzyme Q10 (a lipid antioxidant), we were able to stabilize H460 apoptotic cells in cell cultures for at least 72 h, preventing secondary necrosis. Stabilized apoptotic cells maintain many apoptotic cell characteristics such as the presence of apoptotic microtubules, plasma membrane integrity, low intracellular calcium levels and mitochondrial polarization. Apoptotic cell stabilization may open new avenues in apoptosis detection and therapy.Apoptosis, also known as programmed cell death, is central to homoeostasis and normal development and physiology in multicellular organisms, including humans.1 The dysregulation of apoptosis can lead to the destruction of normal tissues in a variety of disorders, including autoimmune and neurodegenerative diseases (increased apoptosis) or cancer (reduced apoptosis). In addition, effective therapy of tumors requires the iatrogenic induction of apoptosis by radiation, chemotherapy or both. In particular, many antineoplasic drugs such as campothecin, a topoisomerase I inhibitor, kill tumor cells by inducing apoptosis.Apoptosis is thought to be physiologically advantageous because apoptotic cells are removed by phagocytosis before they lose their permeability barrier, thus preventing induction of an inflammatory response to the dying cells and potential harmful secondary effects. However, when massive cell death overwhelms macrophage clearance, as for example in early postchemotherapy or viral infection,2 apoptotic cells may progress to secondary necrosis characterized by cell membrane degradation with spillage of intracellular contents to the extracellular milieu.3 Similarly, cells undergoing apoptosis in vitro cannot usually be cleared by phagocytes and undergo a late process of secondary necrosis.4In the execution phase of apoptosis, effector caspases cleave vital cellular proteins, leading to the morphological changes that characterize apoptosis. These changes include destruction of the nucleus and other organelles, DNA fragmentation, chromatin condensation, cell shrinkage, cell detachment and membrane blebbing.5 In apoptosis, all the degradative processes are isolated from the extracellular space by the plasma membrane that remains impermeable. However, the mechanisms involved in plasma membrane and associated protein protection from the action of caspases are not completely understood. In contrast, necrosis is accompanied by disruption of plasma membrane integrity with the subsequent release of all intracellular compounds to the intercellular space, thus inducing inflammation and more toxic effects to adjacent cells.6, 7To allow the dramatic morphological changes that accompany the execution phase, an apoptotic cell undergoes a series of profound cytoskeletal breakdowns/rearrangements. Previous evidence suggests that the actomyosin cytoskeleton plays an essential role in apoptotic cell remodeling during the early events of the execution phase, whereas all other cytoskeleton elements (microtubules and intermediate filaments) are dismantled.8 However, during the course of the execution phase and after actininomyosin ring contraction, the actomyosin filaments are also depolymerized by a caspase-dependent mechanism. In this situation, the apoptotic cell forms a network of apoptotic microtubules that becomes the main cytoskeleton element of the apoptotic cell. The presence of microtubules in apoptotic cells has previously been reported.9, 10 Moreover, more recent results indicate that microtubules during apoptosis assist in the dispersal of nuclear and cellular fragments,11, 12 and may help to preserve the integrity of plasma membrane of the dying cell.13Reactive oxygen species (ROS) are also important mediators of apoptosis. ROS have been shown to play a major role in apoptosis signaling.14, 15, 16 Electron leak in the presence of oxygen during the process of oxidative phosphorylation make mitochondria the major endogenous source of ROS in the cell. Although mitochondria have been identified as a key player, the mechanism connecting ROS and apoptosis remains unclear.17 It has been debated whether increased ROS during apoptosis is a cause or a consequence of impaired mitochondrial function, and whether ROS are a death signal to the mitochondria or are produced as effector molecules by the mitochondria in response to apoptosis signal.18, 19 Hyperproduction of ROS in execution stages of apoptosis is thought to be caused by the disruption of the mitochondrial respiratory chain after release of cytochrome c into the cytosol.20The main objective of this work was to develop a method for the stabilization of apoptotic cells for proper apoptosis detection or safer potential therapeutic applications. Our results show that apoptotic cells can be stabilized by a cocktail of a microtubule stabilizer (taxol), a caspase inhibitor such (Zn2+) and an antioxidant (coenzyme Q10 (CoQ)).  相似文献   

14.
Vasculogenic mimicry was first described as the unique ability of aggressive melanoma cells to express an endothelial phenotype and to form vessel-like networks in three dimensional cultures, “mimicking” the pattern of embryonic vascular networks and recapitulating the patterned networks seen in patients with aggressive tumors correlated with poor prognosis. Recent work shows the occurrence of alternative vasculogenic patterns is due to the presence of stem cell population (cancer stem cells, CSC) at least in melanoma and glioblastoma. In the present review the new perspectives to target vasculogenic mimicry for an anti-vascular treatment strategy and the possible use of AQP1 as target, are discussed. Interest in AQP1 as a target arises from the pivotal role it plays in the organisation of vascular network affecting the cytoskeleton.  相似文献   

15.
The plant basic body plan is laid down during embryogenesis. All post-embryonic development has its origin in the stem cells located in niches in the heart of the shoot and root meristems. Creating the root niche requires auxin dependent patterning cues that provide positional information in combination with parallel inputs to specify and maintain the root stem cell niche from embryogenesis onwards. Once established, the architecture of the root niche differs from that in the shoot but recent findings reveal a conserved module for stem cell control. Important for stem cell maintenance is the balance between cell division and differentiation. Dealing with the environment is the biggest challenge for plants and that includes complete regeneration of stem cell systems upon damage. Here we will address these issues as we follow the formation, function and maintenance of the root stem cell niche during development.  相似文献   

16.
17.
18.
Summary Recent immunohistochemical studies have shown that basal cells in human prostatic epithelium are not myoepithelial cells. Since in the literature the Dunning tumor, originally described as a rat prostate carcinoma derived from the dorsolateral prostate of a Copenhagen rat, was reported to have myoepithelial cells, a comparative immunohistochemical and ultrastructural study was performed in the H-, HIF- and AT3-lines of the Dunning tumor, the male accessory sex glands (ventral, dorsal, lateral prostate, coagulating gland, bulbourethral gland) and the mammary gland of both Copenhagen and Wistar rats. Mono- and polyclonal antibodies directed against intermediate filament proteins (cytokeratin, desmin, vimentin) and the contractile proteins (-actin, muscle type specific myosin, tropomyosin) were used along with phalloidin decoration of F-actin. As in the human prostate, none of the rat prostate lobes in either strain did contain basal cells expressing cytokeratin along with -actin, myosin and tropomyosin. Cells representing fully differentiated myoepithelial cells, however, were present as anticipated in the mammary gland, the bulbourethral gland and the H-tumor line of the Dunning tumor. This finding is difficult to reconcile with the contention of a prostatic origin of the H-Dunning tumor. Further studies are required to classify the epithelial parental tissue in order to define the true origin of the H-Dunning tumor and the tumor lines derived thereof.  相似文献   

19.
The mixed antiglobulin reaction, to detect surface immunoglobulin (Ig), was combined with uridine labeling and autoradiography to establish that the rat lymphocytes which take up very little uridine are identical with those cells bearing surface immunoglobulin. Thus, low uridine uptake and membrane Ig are both markers for the same B cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号