首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SecA ATPase motor protein plays a central role in bacterial protein transport by binding substrate proteins and the SecY channel complex and utilizing its ATPase activity to drive protein translocation across the plasma membrane. SecA has been shown to exist in a dynamic monomer–dimer equilibrium modulated by translocation ligands, and multiple structural forms of the dimer have been crystallized. Since the structural form of the dimer remains a controversial and unresolved question, we addressed this matter by engineering ρ‐benzoylphenylalanine along dimer interfaces corresponding to the five different SecA X‐ray structures and assessing their in vivo photo‐crosslinking pattern. A discrete anti‐parallel 1M6N‐like dimer was the dominant if not exclusive dimer found in vivo, whether SecA was cytosolic or in lipid or SecYEG‐bound states. SecA bound to a stable translocation intermediate was crosslinked in vivo to a second SecA protomer at its 1M6N interface, suggesting that this specific dimer likely promotes active protein translocation. Taken together, our studies strengthen models that posit, at least in part, a SecA dimer‐driven translocation mechanism.  相似文献   

2.
Precursor protein translocation across the Escherichia coli inner membrane is mediated by the translocase, which is composed of a heterotrimeric integral membrane protein complex with SecY, SecE, and SecG as subunits and peripherally bound SecA. Cross-linking experiments were conducted to study which proteins are associated with SecA in vivo. Formaldehyde treatment of intact cells results in the specific cross-linking of SecA to SecY. Concurrently with the increased membrane association of SecA, an elevated amount of cross-linked product was obtained in cells harboring overproduced SecYEG complex. Cross-linked SecA copurified with hexahistidine-tagged SecY and not with SecE. The data indicate that SecA and SecY coexist as a stable complex in the cytoplasmic membrane in vivo.  相似文献   

3.
The majority of proteins that are secreted across the bacterial cytoplasmic membrane leave the cell via the Sec pathway, which in its minimal form consists of the dimeric ATP-driven motor protein SecA that associates with the protein-conducting membrane pore SecYEG. Some Gram-positive bacteria contain two homologues of SecA, termed SecA1 and SecA2. SecA1 is the essential housekeeping protein, whereas SecA2 is not essential but is involved in the translocation of a subset of proteins, including various virulence factors. Some SecA2 containing bacteria also harbor a homologous SecY2 protein that may form a separate translocase. Interestingly, mycobacteria contain only one SecY protein and thus both SecA1 and SecA2 are required to interact with SecYEG, either individually or together as a heterodimer. In order to address whether SecA1 and SecA2 cooperate during secretion of SecA2 dependent proteins, we examined the oligomeric state of SecA1 and SecA2 of Mycobacterium tuberculosis and their interactions with SecA2 and the cognate SecA1, respectively. We conclude that both SecA1 and SecA2 individually form homodimers in solution but when both proteins are present simultaneously, they form dissociable heterodimers.  相似文献   

4.
Complex behavior in solution of homodimeric SecA   总被引:1,自引:0,他引:1  
SecA, a homodimeric protein involved in protein export in Escherichia coli, exists in the cell both associated with the membrane translocation apparatus and free in the cytosol. SecA is a multifunctional protein involved in protein localization and regulation of its own expression. To carry out these functions, SecA interacts with a variety of proteins, phospholipids, nucleotides, and nucleic acid and shows two enzymic activities. It is an ATPase and a helicase. Its role during protein localization involves interaction with the precursor polypeptides to be exported, the cytosolic chaperone SecB, and the SecY subunit of the membrane-associated translocase, as well as with acidic phospholipids. At the membrane, SecA undergoes a cycle of binding and hydrolysis of ATP coupled to conformational changes that result in translocation of precursors through the cytoplasmic membrane. The helicase activity of SecA and its affinity for its mRNA are involved in regulation of its own expression. SecA has been reported to exist in at least two conformational states during its functional cycle. Here we have used analytical centrifugation, as well as column chromatography coupled with multi-angle light scatter, to show that in solution SecA undergoes at least two monomer-dimer equilibrium reactions that are sensitive to temperature and to concentration of salt.  相似文献   

5.
The motor protein SecA drives the translocation of (pre-)proteins across the SecYEG channel in the bacterial cytoplasmic membrane by nucleotide-dependent cycles of conformational changes often referred to as membrane insertion/de-insertion. Despite structural data on SecA and an archaeal homolog of SecYEG, the identity of the sites of interaction between SecA and SecYEG are unknown. Here, we show that SecA can be cross-linked to several residues in cytoplasmic loop 5 (C5) of SecY, and that SecA directly interacts with a part of transmembrane segment 4 (TMS4) of SecY that is buried in the membrane region of SecYEG. Mutagenesis of either the conserved Arg357 in C5 or Glu176 in TMS4 interferes with the catalytic activity of SecA but not with binding of SecA to SecYEG. Our data explain how conformational changes in SecA could be directly coupled to the previously proposed opening mechanism of the SecYEG channel.  相似文献   

6.
Osborne AR  Rapoport TA 《Cell》2007,129(1):97-110
Many proteins are translocated across the bacterial plasma membrane by the interplay of the cytoplasmic ATPase SecA with a protein-conducting channel, formed from the evolutionarily conserved heterotrimeric SecY complex. Here, we have used purified E. coli components to address the mechanism of translocation. Disulfide bridge crosslinking demonstrates that SecA transfers both the signal sequence and the mature region of a secreted substrate into a single SecY molecule. However, protein translocation involves oligomers of the SecY complex, because a SecY molecule defective in translocation can be rescued by linking it covalently with a wild-type SecY copy. SecA interacts through one of its domains with a nontranslocating SecY copy and moves the polypeptide chain through a neighboring SecY copy. Oligomeric channels with only one active pore likely mediate protein translocation in all organisms.  相似文献   

7.
Bacteria employ the SecA motor protein to push unfolded proteins across the cytoplasmic membrane through the SecY protein‐conducting channel complex. The crystal structure of the SecA–SecY complex shows that the intramolecular regulator of ATPase1 (IRA1) SecA domain, made up of two helices and the loop between them, is partly inserted into the SecY conducting channel, with the loop between the helices as the main functional region. A computational analysis suggested that the entire IRA1 domain is structurally autonomous, and was the basis to synthesize peptide analogs of the SecA IRA1 loop region, to the aim of investigating its conformational preferences. Our study indicates that the loop region populates a predominantly flexible state, even in the presence of structuring agent. This provides indirect evidence that the SecA loop–SecY receptor docking involves loop‐mediated opening of the SecY channel. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
SecA is the precursor protein binding subunit of the bacterial precursor protein translocase, which consists of the SecY/E protein as integral membrane domain. SecA is an ATPase, and couples the hydrolysis of ATP to the release of bound precursor proteins to allow their proton-motive-force-driven translocation across the cytoplasmic membrane. A putative ATP-binding motif can be predicted from the amino acid sequence of SecA with homology to the consensus Walker A-type motif. The role of this domain is not known. A lysine residue at position 106 at the end of the glycine-rich loop in the A motif of the Bacillus subtilis SecA was replaced by an asparagine through site-directed mutagenesis (K106N SecA). A similar replacement was introduced at an adjacent lysine residue at position 101 (K101N SecA). Wild-type and mutant SecA proteins were expressed to a high level and purified to homogeneity. The catalytic efficacy (kcat/km) of the K106N SecA for lipid-stimulated ATP hydrolysis was only 1% of that of the wild-type and K101N SecA. K106N SecA retained the ability to bind ATP, but its ATPase activity was not stimulated by precursor proteins. Mutant and wild-type SecA bind with similar affinity to Escherichia coli inner membrane vesicles and insert into a phospholipid mono-layer, in contrast to the wild type, membrane insertion of the K106N SecA was not prevented by ATP. K106N SecA blocks the ATP and proton-motive-force-dependent chase of a translocation intermediate to fully translocated proOmpA. It is concluded that the GKT motif in the amino-terminal domain of SecA is part of the catalytic ATP-binding site. This site may be involved in the ATP-driven protein recycling function of SecA which allows the release of SecA from its association with precursor proteins, and the phospholipid bilayer.  相似文献   

9.
All bacteria use the conserved Sec pathway to transport proteins across the cytoplasmic membrane, with the SecA ATPase playing a central role in the process. Mycobacteria are part of a small group of bacteria that have two SecA proteins: the canonical SecA (SecA1) and a second, specialized SecA (SecA2). The SecA2-dependent pathway exports a small subset of proteins and is required for Mycobacterium tuberculosis virulence. The mechanism by which SecA2 drives export of proteins across the cytoplasmic membrane remains poorly understood. Here we performed suppressor analysis on a dominant negative secA2 mutant (secA2 K129R) of the model mycobacterium Mycobacterium smegmatis to better understand the pathway used by SecA2 to export proteins. Two extragenic suppressor mutations were identified as mapping to the promoter region of secY, which encodes the central component of the canonical Sec export channel. These suppressor mutations increased secY expression, and this effect was sufficient to alleviate the secA2 K129R phenotype. We also discovered that the level of SecY protein was greatly diminished in the secA2 K129R mutant, but at least partially restored in the suppressors. Furthermore, the level of SecY in a suppressor strongly correlated with the degree of suppression. Our findings reveal a detrimental effect of SecA2 K129R on SecY, arguing for an integrated system in which SecA2 works with SecY and the canonical Sec translocase to export proteins.  相似文献   

10.
The general secretory (Sec) system of Escherichia coli translocates both periplasmic and outer membrane proteins through the cytoplasmic membrane. The pathway through the membrane is provided by a highly conserved translocon, which in E. coli comprises two heterotrimeric integral membrane complexes, SecY, SecE, and SecG (SecYEG), and SecD, SecF, and YajC (SecDF/YajC). SecA is an associated ATPase that is essential to the function of the Sec system. SecA plays two roles, it targets precursors to the translocon with the help of SecB and it provides energy via hydrolysis of ATP. SecA exists both free in the cytoplasm and integrally membrane associated. Here we describe details of association of the amino‐terminal region of SecA with membrane. We use site‐directed spin labelling and electron paramagnetic resonance spectroscopy to show that when SecA is co‐assembled into lipids with SecYEG to yield highly active translocons, the N‐terminal region of SecA penetrates the membrane and lies at the interface between the polar and the hydrophobic regions, parallel to the plane of the membrane at a depth of approximately 5 Å. When SecA is bound to SecYEG, preassembled into proteoliposomes, or nonspecifically bound to lipids in the absence of SecYEG, the N‐terminal region penetrates more deeply (8 Å). Implications of partitioning of the SecA N‐terminal region into lipids on the complex between SecB carrying a precursor and SecA are discussed.  相似文献   

11.
The SecYEG complex constitutes a protein conducting channel across the bacterial cytoplasmic membrane. It binds the peripheral ATPase SecA to form the translocase. When isoleucine 278 in transmembrane segment 7 of the SecY subunit was replaced by a unique cysteine, SecYEG supported an increased preprotein translocation and SecA translocation ATPase activity, and allowed translocation of a preprotein with a defective signal sequence. SecY(I278C)EG binds SecA with a higher affinity than normal SecYEG, in particular in the presence of ATP. The increased translocation activity of SecY(I278C)EG was confirmed in a purified system consisting of SecYEG proteoliposomes, while immunoprecipitation in detergent solution reveal that translocase-preprotein complexes are more stable with SecY(I278C) than with normal SecY. These data imply an important role for SecY transmembrane segment 7 in SecA binding. As improved SecA binding to SecY was also observed with the prlA4 suppressor mutation, it may be a general mechanism underlying signal sequence suppression.  相似文献   

12.
The translocation of proteins across the bacterial cell membrane is carried out by highly conserved components of the Sec system. Most bacterial species have a single copy of the genes encoding SecA and SecY, which are essential for viability. However, Streptococcus gordonii strain M99 encodes SecA and SecY homologues that are not required for viability or for the translocation of most exported proteins. The genes (secA2 and secY2) reside in a region of the chromosome required for the export of GspB, a 286 kDa cell wall-anchored protein. Loss of GspB surface expression is associated with a significant reduction in the binding of M99 to human platelets, suggesting that it may be an adhesin. Genetic analyses indicate that M99 has a second, canonical SecA homologue that is essential for viability. At least two other Gram-positive species, Streptococcus pneumoniae and Staphylococcus aureus, encode two sets of SecA and SecY homologues. One set is more similar to SecA and SecY of Escherichia coli, whereas the other set is more similar to SecA2 and SecY2 of strain M99. The conserved organization of genes in the secY2-secA2 loci suggests that, in each of these Gram-positive species, SecA2 and SecY2 may constitute a specialized system for the transport of a very large serine-rich repeat protein.  相似文献   

13.
Translocation of proteins across the inner membrane of Escherichia coli normally requires the participation of the sec machinery. A number of proteins are known, however, where translocation can proceed unhindered even when the function of either SecA or SecY, central components of the sec machinery, is blocked. We now show that there is a linear correlation between the length of a translocated region and its degree of dependence on SecA and SecY for lengths between 25 and 55 residues. We also find that positively charged residues have distinctly different topological effects during SecA dependent and SecA independent membrane protein insertion, and that a short cytoplasmic segment in Lep can be converted to a translocated segment (with a concomitant inversion of the original topology of the whole molecule) by increasing its length into the SecA/Y dependent realm.  相似文献   

14.
Recently it has been recognized that the signal recognition particle (SRP) of Escherichia coli represents a specific targeting device for hydrophobic inner membrane proteins. It has remained unclear, however, whether the bacterial SRP functions in concert with SecA, which is required for the translocation of secretory proteins across the inner membrane. Here, we have analyzed a hybrid protein constructed by fusing the signal anchor sequence of an SRP-dependent inner membrane protein (MtlA) to the mature part of an exclusively SecA-requiring secretory protein (OmpA). We show that the signal anchor sequence of MtlA confers the novel properties onto nascent chains of OmpA of being co-translationally recognized and targeted to SecY by SRP. Once targeted to SecY, ribosome-associated nascent chains of the hybrid protein, however, remain untranslocated unless SecA is present. These results indicate that SRP and SecA cooperate in a sequential, non-overlapping manner in the topogenesis of those membrane proteins which, in addition to a signal anchor sequence, harbor a substantial hydrophilic domain to be translocated into the periplasm.  相似文献   

15.
Protein translocation across the bacterial cytoplasmic membrane is an essential process catalyzed by the Sec translocase, which in its minimal form consists of the protein-conducting channel SecYEG, and the motor ATPase SecA. SecA binds via its positively charged N-terminus to membranes containing anionic phospholipids, leading to a lipid-bound intermediate. This interaction induces a conformational change in SecA, resulting in a high-affinity association with SecYEG, which initiates protein translocation. Here, we examined the effect of anionic lipids on the SecA-SecYEG interaction in more detail, and discovered a second, yet unknown, anionic lipid-dependent event that stimulates protein translocation. Based on molecular dynamics simulations we identified an anionic lipid-enriched region in vicinity of the lateral gate of SecY. Here, the anionic lipid headgroup accesses the lateral gate, thereby stabilizing the pre-open state of the channel. The simulations suggest flip-flop movement of phospholipid along the lateral gate. Electrostatic contribution of the anionic phospholipids at the lateral gate may directly stabilize positively charged residues of the signal sequence of an incoming preprotein. Such a mechanism allows for the correct positioning of the entrant peptide, thereby providing a long-sought explanation for the role of anionic lipids in signal sequence folding during protein translocation.  相似文献   

16.
G Matsumoto  T Yoshihisa    K Ito 《The EMBO journal》1997,16(21):6384-6393
SecA, the preprotein-driving ATPase in Escherichia coli, was shown previously to insert deeply into the plasma membrane in the presence of ATP and a preprotein; this movement of SecA was proposed to be mechanistically coupled with preprotein translocation. We now address the role played by SecY, the central subunit of the membrane-embedded heterotrimeric complex, in the SecA insertion reaction. We identified a secY mutation (secY205), affecting the most carboxyterminal cytoplasmic domain, that did not allow ATP and preprotein-dependent productive SecA insertion, while allowing idling insertion without the preprotein. Thus, the secY205 mutation might affect the SecYEG 'channel' structure in accepting the preprotein-SecA complex or its opening by the complex. We isolated secA mutations that allele-specifically suppressed the secY205 translocation defect in vivo. One mutant protein, SecA36, with an amino acid alteration near the high-affinity ATP-binding site, was purified and suppressed the in vitro translocation defect of the inverted membrane vesicles carrying the SecY205 protein. The SecA36 protein could also insert into the mutant membrane vesicles in vitro. These results provide genetic evidence that SecA and SecY specifically interact, and show that SecY plays an essential role in insertion of SecA in response to a preprotein and ATP and suggest that SecA drives protein translocation by inserting into the membrane in vivo.  相似文献   

17.
Besides SecA and SecB, Escherichia coli cells possess a signal recognition particle (SRP) to target exported proteins to the SecY translocon. Using chemical and site-specific cross-linking in vitro, we show that SRP recognizes the first signal anchor sequence of a polytopic membrane protein (MtlA) resulting in cotranslational targeting of MtlA to SecY and phospholipids of the plasma membrane. In contrast, a possible interaction of SRP with the secretory protein pOmpA is prevented by the association of trigger factor with nascent pOmpA. Trigger factor also prevents SecA from binding to the first 125 amino acids of pOmpA when they are still associated with the ribosome. Under no experimental conditions was SecA found to interact with MtlA. Likewise, virtually no binding of trigger factor to ribosome-bound MtlA occurs even in the complete absence of SRP. Collectively, our results indicate that at the stage of nascent polypeptides, polytopic membrane proteins are selected by SRP for co-translational membrane targeting, whereas secretory proteins are directed into the SecA/SecB-mediated post-translational targeting pathway by means of their preferential recognition by trigger factor.  相似文献   

18.
The protein translocation system of Escherichia coli was solubilized and reconstituted, using the octylglucoside dilution method, into liposomes prepared from E. coli phospholipids. SecA, ATP, phospholipids and membrane proteins were found to be essential for the translocation of a model secretory protein, uncleavable OmpF-Lpp. Phospholipids were found to play roles not only in liposome formation but also in the stabilization of membrane proteins during the octylglucoside extraction. The effects of IgGs specific to five distinct regions of the SecY molecule on protein translocation into proteoliposomes were examined. IgGs specific to the amino- and carboxyl-terminal regions of the SecY molecule strongly inhibited the translocation activity, indicating the participation of SecY in the translocation. Generation of a proton motive force due to the simultaneous reconstitution of F0F1-ATPase was also observed in the presence of ATP. An ATP-generating system consisting of creatine phosphate and creatine kinase significantly enhanced the formation of the proton motive force and the protein translocation activity of the proteoliposomes. Collapse of the proton motive force thus generated partially inhibited the translocation.  相似文献   

19.
Recent insight into the biochemical mechanism of protein translocation in Escherichia coli indicates that SecA ATPase is required both for the initial binding of preproteins to the inner membrane as well as subsequent translocation across this structure. SecA appears to promote these events by direct recognition of the preprotein or preprotein-SecB complex, binding to inner-membrane anionic phospholipids, insertion into the membrane biiayer and association with the preprotein translocator, SecY/SecE. ATP binding appears to control the affinity of SecA for the various components of the system and ATP hydrolysis promotes cycling between its different biochemical states. As a component likely to catalyse a rate-determining step in protein secretion, SecA synthesis is co-ordinated with the activity of the protein export pathway. This form of negative reguiation appears to rely on SecA protein binding to its mRNA and repressing translation if conditions of rapid protein secretion prevail within the cell. A precise biochemical scheme for SecA-dependent catalysis of protein export and the details of secA regulation appear to be close at hand. The evolutionary conservation of SecA protein among eubacteria as well as the general requirement for translocation ATPases in other protein secretion systems argues for a mechanistic commonality of all prokaryotic protein export pathways.  相似文献   

20.
The growth of secAts or secYts mutants at the restrictive temperature has been shown to inhibit the export of many outer membrane proteins. We report here that in two secAts strains the rate of incorporation of newly synthesized protein into both inner and outer membrane fractions decreased by about 70% at the restrictive temperature. The export of the outer membrane protein TonA was used as a model system in which to study the effects of SecA or SecY inactivation. pre-TonA that accumulated at the restrictive temperature was found to co-sediment with the outer membrane fraction. However, the precursor was sensitive to protease and did not float up a sucrose gradient with the membrane fractions. It was therefore concluded that pre-TonA was not integrated into the outer membrane fraction but probably accumulated in the cytoplasm. Studies on the rate of processing of pre-TonA, pulse-labelled at the restrictive temperature then chased at the permissive temperature, revealed differences between secA and secY mutants. In the secAts mutant the great majority of cytoplasmic pre-TonA was not apparently processed to the mature form, whereas in the secYts mutant significant amounts of precursors were rapidly chased into mature TonA, which appeared in the outer membrane. These results suggest that SecA and SecY may act sequentially in the export of proteins to the outer membrane. In particular these data indicate that SecA is required to maintain pre-TonA in a translocationally competent form prior to interaction with the SecY export site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号