首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two groups of plant chromatin-associated high mobility group (HMG) proteins, namely the HMGA family, typically containing four A/T-hook DNA-binding motifs, and the HMGB family, containing a single HMG-box DNA-binding domain, have been identified. We have examined the interaction of recombinant maize HMGA and five different HMGB proteins with mononucleosomes (containing approx. 165 bp of DNA) purified from micrococcal nuclease-digested maize chromatin. The HMGB proteins interacted with the nucleosomes independent of the presence of the linker histone H1, while the binding of HMGA in the presence of H1 differed from that observed in the absence of H1. HMGA and the HMGB proteins bound H1-containing nucleosome particles with similar affinity. The plant HMG proteins could also bind nucleosomes that were briefly treated with trypsin (removing the N-terminal domains of the core histones), suggesting that the histone N-termini are dispensable for HMG protein binding. In the presence of untreated nucleosomes and trypsinised nucleosomes, HMGB1 could be chemically crosslinked with a core histone, which indicates that the trypsin-resistant part of the histones within the nucleosome is the main interaction partner of HMGB1 rather than the histone N-termini. In conclusion, these results indicate that specific nucleosome binding of the plant HMGB proteins requires simultaneous DNA and histone contacts.  相似文献   

2.
3.
4.
5.
6.
高迁移率族蛋白与真核基因表达调控   总被引:12,自引:0,他引:12       下载免费PDF全文
高迁移率族蛋白 (high mobility group protein , HMG) 是一系列的染色质相关蛋白,广泛存在于真核生物细胞中,含量丰富,因其在聚丙烯酰胺凝胶电泳中的高迁移率而得名 . HMG 蛋白家族可分为 HMGB 、 HMGA 和 HMGN 三类亚家族,各亚家族有其特征的结构域,这些结构域介导了 HMG 和 DNA 或染色质相关区域的相互作用 . 现已发现这些蛋白质具有多种重要生物学功能,其中几乎所有 HMG 都可以通过修饰、弯曲或改变染色质 /DNA 的结构,促进各种蛋白质因子形成大分子复合物来调节基因转录 .  相似文献   

7.
High mobility group proteins and their post-translational modifications   总被引:1,自引:0,他引:1  
The high mobility group (HMG) proteins, including HMGA, HMGB and HMGN, are abundant and ubiquitous nuclear proteins that bind to DNA, nucleosome and other multi-protein complexes in a dynamic and reversible fashion to regulate DNA processing in the context of chromatin. All HMG proteins, like histone proteins, are subjected to extensive post-translational modifications (PTMs), such as lysine acetylation, arginine/lysine methylation and serine/threonine phosphorylation, to modulate their interactions with DNA and other proteins. There is a growing appreciation for the complex relationship between the PTMs of HMG proteins and their diverse biological activities. Here, we reviewed the identified covalent modifications of HMG proteins, and highlighted how these PTMs affect the functions of HMG proteins in a variety of cellular processes.  相似文献   

8.
9.
10.
Rice HMGB1 protein recognizes DNA structures and bends DNA efficiently   总被引:4,自引:0,他引:4  
We analyzed the DNA-binding and DNA-bending properties of recombinant HMGB1 proteins based on a rice HMGB1 cDNA. Electrophoretic mobility shift assay demonstrated that rice HMGB1 can bind synthetic four-way junction (4H) DNA and DNA minicircles efficiently but the binding to 4H can be completed out by HMGA and histone H1. Conformational changes were detected by circular dichroism analysis with 4H DNA bound to various concentrations of HMGB1 or its truncated forms. T4 ligase-mediated circularization assays with short DNA fragments of 123 bp showed that the protein is capable of increasing DNA flexibility. The 123-bp DNA formed closed circular monomers efficiently in its presence, similar to that in an earlier study on maize HMG. Additionally, our results show for the first time that the basic N-terminal domain enhances the affinity of the plant HMGB1 protein for 4H DNA, while the acidic C-terminal domain has the converse effects.  相似文献   

11.
Priming the nucleosome: a role for HMGB proteins?   总被引:6,自引:0,他引:6       下载免费PDF全文
Travers AA 《EMBO reports》2003,4(2):131-136
  相似文献   

12.
Plant high-mobility-group (HMG) chromosomal proteins are the most abundant and ubiquitous nonhistone proteins found in the nuclei of higher eukaryotes. There are only two families of HMG proteins, namely, HMGA and HMGB in plants. The cDNA encoding wheat HMGa protein was isolated and characterized. Wheat HMGA cDNA encodes a protein of 189 amino acid residues. At its N terminus, there is a histone H1-like structure, which is a common feature of plant HMGA proteins, followed by four AT-hook motifs. Polymerase chain reaction results show that the gene contains a single intron of 134 bp. All four AT-hook motifs are encoded by the second exon. Northern blot results show that the expression of HMGA gene is much higher in organs undergoing active cell proliferation. Gel retardation analysis show that wheat HMGa, b, c and histone H1 bind to four-way-junction DNA with high binding affinity, but affinity is dramatically reduced with increasing Mg(2+) and Na(+) ion concentration. Competition binding studies show that proteins share overlapping binding sites on four-way-junction DNA. HMGd does not bind to four-way-junction DNA.  相似文献   

13.
Role of high mobility group (HMG) chromatin proteins in DNA repair   总被引:6,自引:0,他引:6  
Reeves R  Adair JE 《DNA Repair》2005,4(8):926-938
  相似文献   

14.
Molecular biology of HMGA proteins: hubs of nuclear function   总被引:38,自引:0,他引:38  
Reeves R 《Gene》2001,277(1-2):63-81
  相似文献   

15.
Zou Y  Wang Y 《Biochemistry》2005,44(16):6293-6301
High-mobility group (HMG) A1a and A1b proteins are among a family of HMGA proteins that bind to the minor groove of AT-rich regions of DNA. Here we employed tandem mass spectrometry and determined without ambiguity the sites of phosphorylation and the nature of methylation of HMGA1 proteins that were isolated from the PC-3 human prostate cancer cells. We showed by LC-MS/MS that Ser101 and Ser102 were completely phosphorylated in HMGA1a protein, whereas only a portion of the protein was phosphorylated at Ser98. We also found that the HMGA1b protein was phosphorylated at the corresponding sites, that is, Ser90, Ser91 and Ser87. In addition, Arg25, which is within the first DNA-binding AT-hook domain of HMGA1a, was both mono- and dimethylated. Moreover, both symmetric and asymmetric dimethylations were observed. The closely related HMGA1b protein, however, was not methylated. The unambiguous identification of the sites of phosphorylation and the nature of methylation facilitates the future examination of the biological implications of the HMGA1 proteins.  相似文献   

16.
In contrast to other eukaryotes which usually express two closely related HMG1-like proteins, plant cells have multiple relatively variable proteins of this type. A systematic analysis of the DNA-binding properties of four chromosomal HMG domain proteins from maize revealed that they bind linear DNA with similar affinity. HMGa, HMGc1/2 and HMGd specifically recognise diverse DNA structures such as DNA mini-circles and supercoiled DNA. They induce DNA-bending, and constrain negative superhelical turns in DNA. In the presence of DNA, the HMG domain proteins can self-associate, whereas they are monomeric in solution. The maize HMG1-like proteins have the ability to facilitate the formation of nucleoprotein structures to different extents, since they can efficiently replace a bacterial chromatin-associated protein required for the site-specific β-mediated recombination. A variable function of the HMG1-like proteins is indicated by their differential association with maize chromatin, as judged by their ‘extractability’ from chromatin with spermine and ethidium bromide. Collectively, these findings suggest that the various plant chromosomal HMG domain proteins could be adapted to act in different nucleoprotein structures in vivo.  相似文献   

17.
18.
19.
高迁移率族蛋白   总被引:4,自引:0,他引:4  
高迁移率族蛋白(highmobilitygroupprotein,HMG蛋白)广泛存在于真核生物细胞中,因其在聚丙稀凝胶电泳中的高迁移率而得名。HMG蛋白是真核细胞基因调控的动力体现者,是真核细胞内继组蛋白之后含量最为丰富的一组染色质蛋白质,它们在染色质的结构与功能及基因表达调控过程中均发挥着重要作用。HMG蛋白家族可分为HMGA、HMGB和HMGN三类亚家族。现对HMG蛋白家族的三类亚家族蛋白HMGA、HMGB和HMGN的结构与功能进行综述。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号