首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yen HC  Gordon C  Chang EC 《Cell》2003,112(2):207-217
Yin6 is a yeast homolog of Int6, which is implicated in tumorigenesis. We show that Yin6 binds to and regulates proteasome activity. Overexpression of Yin6 strengthens proteasome function while inactivation weakens and causes the accumulation of polyubiquitinated proteins including securin/Cut2 and cyclin/Cdc13. Yin6 regulates the proteasome by preferentially interacting with Rpn5, a conserved proteasome subunit, and affecting its localization/assembly. We showed previously that Yin6 cooperates with Ras1 to mediate chromosome segregation; here, we demonstrate that Ras1 similarly regulates the proteasome via Rpn5. In yeast, human Int6 binds Rpn5 and regulates its localization. We propose that human Int6, either alone or cooperatively with Ras, influences proteasome activities via Rpn5. Inactivating Int6 can lead to accumulation of mitotic regulators affecting cell division and mitotic fidelity.  相似文献   

2.
The 26S proteasome plays a major role in eukaryotic protein breakdown, especially for ubiquitin-tagged proteins. Substrate specificity is conferred by the regulatory particle (RP), which can dissociate into stable lid and base subcomplexes. To help define the molecular organization of the RP, we tested all possible paired interactions among subunits from Saccharomyces cerevisiae by yeast two-hybrid analysis. Within the base, a Rpt4/5/3/6 interaction cluster was evident. Within the lid, a structural cluster formed around Rpn5/11/9/8. Interactions were detected among synonymous subunits (Csn4/5/7/6) from the evolutionarily related COP9 signalosome (CSN) from Arabidopsis, implying a similar quaternary arrangement. No paired interactions were detected between lid, base or core particle subcomplexes, suggesting that stable contacts between them require prior assembly. Mutational analysis defined the ATPase, coiled-coil, PCI and MPN domains as important for RP assembly. A single residue in the vWA domain of Rpn10 is essential for amino acid analog resistance, for degrading a ubiquitin fusion degradation substrate and for stabilizing lid-base association. Comprehensive subunit interaction maps for the 26S proteasome and CSN support the ancestral relationship of these two complexes.  相似文献   

3.
Lier S  Paululat A 《Gene》2002,298(2):109-119
The eukaryotic 26S proteasome plays a central role in ubiquitin-dependent intracellular protein metabolism. The multimeric holoenzyme is composed of two major subcomplexes, known as the 20S proteolytic core particle and the 19S regulatory particle (RP). The RP can be further dissected into two multisubunit complexes, the lid and the base complex. The lid complex shares striking similarities with another multiprotein complex, the COP9 signalosome. Several subunits of both complexes contain the characteristic PCI domain, a structural motif important for complex assembly. The COP9 signalosome was shown to act as a versatile regulator in numerous pathways. To help define the molecular interactions of the signalosome during Drosophila development, we performed a yeast two-hybrid screen to identify proteins that physically interact with subunit 2 of the complex, namely Alien/CSN2. Here, we report that Drosophila Rpn6, a non-ATPase subunit of the RP lid complex, interacts with Alien/CSN2 via its PCI domain. The temporal and spatial expression patterns of Rpn6 and alien/CSN2 overlap on a large scale during development providing additional evidence for their interaction in vivo. Analyses of an Rpn6 P element insertion mutant and newly generated Rpn6 alleles reveal that Rpn6 is essential for Drosophila development.  相似文献   

4.
Rpn6p is a component of the lid of the 26 S proteasome. We isolated and analyzed two temperature-sensitive rpn6 mutants in the yeast, Saccharomyces cerevisiae. Both mutants showed defects in protein degradation in vivo. However, the affinity-purified 26 S proteasome of the rpn6 mutants grown at the permissive temperature degraded polyubiquitinated Sic1p efficiently, even at a higher temperature. Interestingly, their enzyme activity was even higher at a higher temperature, indicating that once made mutant proteasomes are stable and have little defect in the proteolytic function. These results suggest that the deficiency in protein degradation observed in vivo is rather due to a defect in the assembly of a holoenzyme at the restrictive temperature. Indeed, both rpn6 mutants grown at the restrictive temperature were defective in assembling the 26 S proteasome. A striking feature of the rpn6 mutants at the restrictive temperature was that there appeared a protein complex composed of only four of the nine lid components, Rpn5p, Rpn8p, Rpn9p, and Rpn11p. Altogether, we conclude that Rpn6p is essential for the integrity/assembly of the lid in the sense that it is necessary for the incorporation of Rpn3p, Rpn7p, Rpn12p, and Sem1p (Rpn15p) into the lid, thereby playing an essential role in the proper function of the 26 S proteasome.  相似文献   

5.
The 26S proteasome is an essential molecular machine for specific protein degradation in eukaryotic cells. The 26S proteasome is formed by a central 20S core particle capped by two 19S regulatory particle (RP) at both ends. The Rpn9 protein is a non-ATPase subunit located in the lid complex of the 19S RP, and is identified to be essential for efficient assembly of yeast 26S proteasome. Bioinformatics analysis of Saccharomyces cerevisiae Rpn9 suggested it contains a PCI domain at the C-terminal region. However, high-resolution structures of either the PCI domain or the full-length Rpn9 still remain elusive. Herein, we report the chemical shift assignments of 1H, 13C and 15N atoms of the individual N- and C-domains, as well as full-length S. cerevisiae Rpn9, which provide the basis for further structural and functional studies of Rpn9 using solution NMR technique.  相似文献   

6.
The regulatory particle (RP) of the 26 S proteasome functions in preparing polyubiquitinated substrates for degradation. The lid complex of the RP contains an Rpn8-Rpn11 heterodimer surrounded by a horseshoe-shaped scaffold formed by six proteasome-COP9/CSN-initiation factor (PCI)-containing subunits. The PCI domains are essential for lid assembly, whereas the detailed molecular mechanisms remain elusive. Recent cryo-EM studies at near-atomic resolution provided invaluable information on the RP architecture in different functional states. Nevertheless, atomic resolution structural information on the RP is still limited, and deeper understanding of RP assembly mechanism requires further studies on the structures and interactions of individual subunits or subcomplexes. Herein we report the high-resolution NMR structures of the PCI-containing subunit Rpn9 from Saccharomyces cerevisiae. The 45-kDa protein contains an all-helical N-terminal domain and a C-terminal PCI domain linked via a semiflexible hinge. The N-terminal domain mediates interaction with the ubiquitin receptor Rpn10, whereas the PCI domain mediates interaction with the neighboring PCI subunit Rpn5. The Rpn9-Rpn5 interface highlights two structural motifs on the winged helix module forming a hydrophobic center surrounded by ionic pairs, which is a common pattern for all PCI-PCI interactions in the lid. The results suggest that divergence in surface composition among different PCI pairs may contribute to the modulation of lid assembly.  相似文献   

7.
The 26S proteasome is a highly conserved multisubunit protease that degrades ubiquitinated proteins in eukaryotic cells. It comprises a 20S core particle and two 19S regulatory particles that are further divided into the lid and base complexes. The lid is a nine subunits complex that is structurally related to the COP9 signalosome and the eukaryotic initiation factor 3. Although the assembly pathway of the 20S and the base are well described, that of the lid is still unclear. In this study, we dissected the lid assembly using yeast lid mutant cells, rpn7-3, Δrpn9, and rpn12-1. Using mass spectrometry, we identified a number of lid subassemblies, such as Rpn3-Rpn7 pair and a lid-like complex lacking Rpn12, in the mutants. Our analysis suggests that the assembly of the lid is a highly ordered and multi-step process; first, Rpn5, 6, 8, 9, and 11 are assembled to form a core module, then a second module, consisting of Rpn3, 7, and Sem1, is attached, followed by the incorporation of Rpn12 to form the lid complex.  相似文献   

8.
The yeast protein Rad23 belongs to a diverse family of proteins that contain an amino-terminal ubiquitin-like (UBL) domain. This domain mediates the binding of Rad23 to proteasomes, which in turn promotes DNA repair and modulates protein degradation, possibly by delivering ubiquitinylated cargo to proteasomes. Here we show that Rad23 binds proteasomes by directly interacting with the base subcomplex of the regulatory particle of the proteasome. A component of the base, Rpn1, specifically recognizes the UBL domain of Rad23 through its leucine-rich-repeat-like (LRR-like) domain. A second UBL protein, Dsk2, competes with Rad23 for proteasome binding, which suggests that the LRR-like domain of Rpn1 may participate in the recognition of several ligands of the proteasome. We propose that the LRR domain of Rpn1 may be positioned in the base to allow the cargo proteins carried by Rad23 to be presented to the proteasomal ATPases for unfolding. We also report that, contrary to expectation, the base subunit Rpn10 does not mediate the binding of UBL proteins to the proteasome in yeast, although it can apparently contribute to the binding of ubiquitin chains by intact proteasomes.  相似文献   

9.
An Rpn9-disrupted yeast strain, Delta rpn9, whose growth is temperature sensitive with defective assembly of the 26 S proteasome complex, was studied. This mutant yeast was more resistant to hydrogen peroxide treatment and able to degrade carbonylated proteins more efficiently than wild type. Nondenaturing gel electrophoresis followed by activity staining revealed that Delta rpn9 yeast cells had a higher activity of 20 S proteasome than wild type and that in both Delta rpn9 and wild-type cells treated with hydrogen peroxide, 20 S proteasome activity was increased with a concomitant decrease in 26 S proteasome activity. Protein multiubiquitination was not observed in the hydrogen peroxide-treated cells. Taken together, these results suggest that the 20 S proteasome degrades oxidized proteins without ubiquitination of target proteins.  相似文献   

10.
11.
Takeuchi J  Toh-e A 《Biochimie》2001,83(3-4):333-340
Rpn9 is one of the subunits of the regulatory particle of the yeast 26S proteasome and is needed for stability or efficient assembly of the 26S proteasome. As anticipated from the fact that the rpn9 disruptant grew at 25 degrees C but arrested in G2/M phase at 37 degrees C, the CDK inhibitor Sic1p was found to be degraded at the G1/S boundary in the Deltarpn9 cells. The degradation of the anaphase inhibitor Pds1p was delayed in the Deltarpn9 cells. Clb2p in M phase, as well as that ectopically expressed in G1 and S phases, was degraded more slowly in the Deltarpn9 cells than in the wild type cells, indicating that the 26S proteasome lacking Rpn9 uses Sic1p as a better substrate than Pds1p and Clb2p. These results, in addition to the fact that multiubiquitinated proteins were accumulated in the Deltarpn9 cells incubated at 37 degrees C, strongly suggest that Rpn9 is involved in the proteolysis of a subset of the substrates degraded by the 26S proteasome. The Deltarpn9 Deltapds1 double mutant was unable to elongate spindle at a restrictive temperature, suggesting that some protein(s) other than Scc1 (cohesin) should be degraded during progression of anaphase.  相似文献   

12.
The yeast (Saccharomyces cerevisiae) contains three N-acetyltransferases, NatA, NatB, and NatC, each of which acetylates proteins with different N-terminal regions. The 19S regulatory particle of the yeast 26S proteasome consists of 17 subunits, 12 of which are N-terminally modified. By using nat1, nat3, and mak3 deletion mutants, we found that 8 subunits, Rpt4, Rpt5, Rpt6, Rpn2, Rpn3, Rpn5, Rpn6, and Rpn8, were NatA substrates, and that 2 subunits, Rpt3 and Rpn11, were NatB substrates. Mass spectrometric analysis revealed that the initiator Met of Rpt2 precursor polypeptide was processed and a part of the mature Rpt2 was N-myristoylated. The crude extracts from the normal strain and the nat1 deletion mutant were similar in chymotrypsin-like activity in the presence of ATP in vitro and in the accumulation level of the 26S proteasome. These characteristics were different from those of the 20S proteasome: the chymotrypsin-like activity and accumulation level of 20S proteasome were appreciably higher from the nat1 deletion mutant than from the normal strain.  相似文献   

13.
Proper function of the 26 S proteasome requires assembly of the regulatory complex, which is composed of the lid and base subcomplexes. We characterized Rpn5, a lid subunit, in fission yeast. We show that Rpn5 associates with the proteasome rpn5. Deletion (rpn5Delta) exacerbates the growth defects in proteasome mutants, leading to mitotic abnormalities, which correlate with accumulation of polyubiquitinated proteins, such as Cut2/securin. Rpn5 expression is tightly controlled; both overexpression and deletion of rpn5 impair proteasome functions. The proteasome is assembled around the inner nuclear membrane in wild-type cells; however, in rpn5Delta cells, proteasome subunits are improperly assembled and/or localized. In the lid mutants, Rpn5 is mislocalized in the cytosol, while in the base mutants, Rpn5 can enter the nucleus, but is left in the nucleoplasm, and not assembled into the nuclear membrane. These results suggest that Rpn5 is a dosage-dependent proteasome regulator and plays a role in mediating proper proteasome assembly. Moreover, the Rpn5 assembly may be a cooperative process that involves at least two steps: 1) nuclear import and 2) subsequent assembly into the nuclear membrane. The former step requires other components of the lid, while the latter requires the base. Human Rpn5 rescues the phenotypes associated with rpn5Delta and is incorporated into the yeast proteasome, suggesting that Rpn5 functions are highly conserved.  相似文献   

14.
The COP9 signalosome (CSN) occurs in all eukaryotic cells. It is a regulatory particle of the ubiquitin (Ub)/26S proteasome system. The eight subunits of the CSN possess sequence homologies with the polypeptides of the 26S proteasome lid complex and just like the lid, the CSN consists of six subunits with PCI (proteasome, COP9 signalosome, initiation factor 3) domains and two components with MPN (Mpr-Pad1-N-terminal) domains. Here we show that the CSN directly interacts with the 26S proteasome and competes with the lid, which has consequences for the peptidase activity of the 26S proteasome in vitro. Flag-CSN2 was permanently expressed in mouse B8 fibroblasts and Flag pull-down experiments revealed the formation of an intact Flag-CSN complex, which is associated with the 26S proteasome. In addition, the Flag pull-downs also precipitated cullins indicating the existence of super-complexes consisting of the CSN, the 26S proteasome and cullin-based Ub ligases. Permanent expression of a chimerical subunit (Flag-CSN2-Rpn6) consisting of the N-terminal 343 amino acids of CSN2 and of the PCI domain of S9/Rpn6, the paralog of CSN2 in the lid complex, did not lead to the assembly of an intact complex showing that the PCI domain of CSN2 is important for complex formation. The consequence of permanent Flag-CSN2 overexpression was de-novo assembly of the CSN complex connected with an accelerated degradation of p53 and stabilization of c-Jun in B8 cells. The possible role of super-complexes composed of the CSN, the 26S proteasome and of Ub ligases in the regulation of protein stability is discussed.  相似文献   

15.
Kinesin-like calmodulin binding protein (KCBP) is a member of kinesin-14 subfamily with unconventional domains distinct from other kinesins. This unique kinesin has the myosin tail homology 4 domain (MyTH4) and band4.1, ezrin, radixin and moesin domain (FERM) at the N-terminal which interact with several cytoskeleton proteins. Although KCBP is implicated in several microtubule-related cellular processes, studies on the KCBP of Dunaliella salina (DsKCBP) have not been reported. In this study, the roles of DsKCBP in flagella and cytoskeleton were investigated and the results showed that DsKCBP was present in flagella and upregulated during flagellar assembly indicting that it may be a flagellar kinesin and plays a role in flagellar assembly. A MyTH4-FERM domain of the DsKCBP was identified as a microtubule and actin interacting site. The interaction of DsKCBP with both microtubules and actin microfilaments suggests that this kinesin may be employed to coordinate these two cytoskeleton elements in algal cells. To gain more insights into the cellular function of the kinesin, DsKCBP-interacting proteins were examined using yeast two-hybrid screen. A 26S proteasome subunit Rpn8 was identified as a novel interacting partner of DsKCBP and the MyTH4-FERM domain was necessary for the interaction of DsKCBP with Rpn8. Furthermore, the DsKCBP was polyubiquitinated and up-regulated by proteasome inhibitor and degraded by ubiquitin–proteasome system indicating that proteasome is related to kinesin degradation.  相似文献   

16.
Ubiquitin-like (UBL)-ubiquitin-associated (UBA) proteins such as Rad23 and Dsk2 mediate the delivery of polyubiquitinated proteins to the proteasome in the ubiquitin-proteasome pathway. We show here that budding yeast peptidyl-tRNA hydrolase 2 (Pth2), which was previously recognized as a peptidyl-tRNA hydrolase, is a UBL domain-binding protein that participates in the ubiquitin-proteasome pathway. Pth2 bound to the UBL domain of both Rad23 and Dsk2. Pth2 also interacted with polyubiquitinated proteins through the UBA domains of Rad23 and Dsk2. Pth2 overexpression caused an accumulation of polyubiquitinated proteins and inhibited the growth of yeast. Ubiquitin-dependent degradation was accelerated in the pth2Delta mutant and was retarded by overexpression of Pth2. Pth2 inhibited the interaction of Rad23 and Dsk2 with the polyubiquitin receptors Rpn1 and Rpn10 on the proteasome. Furthermore, Pth2 function involving UBL-UBA proteins was independent of its peptidyl-tRNA hydrolase activity. These results suggest that Pth2 negatively regulates the UBL-UBA protein-mediated shuttling pathway in the ubiquitin-proteasome system.  相似文献   

17.
26S proteasome, a major regulatory protease in eukaryotes, consists of a 20S proteolytic core particle (CP) capped by a 19S regulatory particle (RP). The 19S RP is divisible into base and lid sub-complexes. Even within the lid, subunits have been demarcated into two modules: module 1 (Rpn5, Rpn6, Rpn8, Rpn9 and Rpn11), which interacts with both CP and base sub-complexes and module 2 (Rpn3, Rpn7, Rpn12 and Rpn15) that is attached mainly to module 1. We now show that suppression of RPN11 expression halted lid assembly yet enabled the base and 20S CP to pre-assemble and form a base-CP. A key role for Regulatory particle non-ATPase 11 (Rpn11) in bridging lid module 1 and module 2 subunits together is inferred from observing defective proteasomes in rpn11–m1, a mutant expressing a truncated form of Rpn11 and displaying mitochondrial phenotypes. An incomplete lid made up of five module 1 subunits attached to base-CP was identified in proteasomes isolated from this mutant. Re-introducing the C-terminal portion of Rpn11 enabled recruitment of missing module 2 subunits. In vitro, module 1 was reconstituted stepwise, initiated by Rpn11–Rpn8 heterodimerization. Upon recruitment of Rpn6, the module 1 intermediate was competent to lock into base-CP and reconstitute an incomplete 26S proteasome. Thus, base-CP can serve as a platform for gradual incorporation of lid, along a proteasome assembly pathway. Identification of proteasome intermediates and reconstitution of minimal functional units should clarify aspects of the inner workings of this machine and how multiple catalytic processes are synchronized within the 26S proteasome holoenzymes.  相似文献   

18.
A major fraction of intracellular protein degradation is mediated by the proteasome. Successful degradation of these substrates requires ubiquitination and delivery to the proteasome followed by protein unfolding and disassembly of the multiubiquitin chain. Enzymes, such as Rpn11, dismantle multiubiquitin chains, and mutations can affect proteasome assembly and activity. We report that different rpn11 mutations can affect proteasome interaction with ubiquitinated proteins. Moreover, proteasomes are unstable in rpn11-1 and do not form productive interactions with multiubiquitinated proteins despite high levels in cell extracts. However, increased levels of ubiquitinated proteins were found associated with shuttle factors. In contrast to rpn11-1, proteasomes expressing a catalytically inactive mutant (rpn11AXA) were more stable and bound very high amounts of ubiquitinated substrates. Expression of the carboxyl-terminal domain of Rpn11 partially suppressed the growth and proteasome stability defects of rpn11-1. These results indicate that ubiquitinated substrates are preferentially delivered to intact proteasome.  相似文献   

19.
Decline of proteasome activity has been reported in mammals, flies and yeasts during aging. In the yeast Saccharomyces cerevisiae, the reduction of proteolysis in stationary phase is correlated with disassembly of the 26S proteasomes into their 20S and 19S subcomplexes. However a recent report showed that upon entry into the stationary phase, proteasome subunits massively re-localize from the nucleus into mobile cytoplasmic structures called proteasome storage granules (PSGs). Whether proteasome subunits in PSG are assembled into active complexes remains an open question that we addressed in the present study. We showed that a particular mutant of the RPN11 gene (rpn11-m1), encoding a proteasome lid subunit already known to exhibit proteasome assembly/stability defect in vitro, is unable to form PSGs and displays a reduced viability in stationary phase. Full restoration of long-term survival and PSG formation in rpn11-m1 cells can be achieved by the expression in trans of the last 45 amino acids of the C-terminal domain of Rpn11, which was moreover found to co-localize with PSGs. In addition, another rpn11 mutant leading to seven amino acids change in the Rpn11 C-terminal domain, which exhibits assembled-26S proteasomes, is able to form PSGs but with a delay compared to the wild type situation. Altogether, our findings indicate that PSGs are formed of fully assembled 26S proteasomes and suggest a critical role for the Rpn11 protein in this process.  相似文献   

20.
We have isolated the RPN9 gene by two-hybrid screening with, as bait, RPN10 (formerly SUN1), which encodes a multiubiquitin chain receptor residing in the regulatory particle of the 26S proteasome. Rpn9 is a nonessential subunit of the regulatory particle of the 26S proteasome, but the deletion of this gene results in temperature-sensitive growth. At the restrictive temperature, the Deltarpn9 strain accumulated multiubiquitinated proteins, indicating that the RPN9 function is needed for the 26S proteasome activity at a higher temperature. We analyzed the proteasome fractions separated by glycerol density gradient centrifugation by native polyacrylamide gel electrophoresis and found that a smaller amount of the 26S proteasome was produced in the Deltarpn9 cells and that the 26S proteasome was shifted to lighter fractions than expected. The incomplete proteasome complexes were found to accumulate in the Deltarpn9 cells. Furthermore, Rpn10 was not detected in the fractions containing proteasomes of the Deltarpn9 cells. These results indicate that Rpn9 is needed for incorporating Rpn10 into the 26S proteasome and that Rpn9 participates in the assembly and/or stability of the 26S proteasome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号