首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Propensity to develop acute functional (or within session) tolerance to alcohol (ethanol) may influence the amount of alcohol consumed, with higher drinking associated with greater acute functional tolerance (AFT). The goal of this study was to assess this potential correlated response between alcohol preference and AFT in second and third replicate lines of mice selectively bred for high (HAP2 and HAP3) and low (LAP2 and LAP3) alcohol preference drinking. Male and female mice were tested for development of AFT on a static dowel task, which requires that animals maintain balance on a wooden dowel in order to prevent falling. On test day, each mouse received one (1.75 g/kg; Experiment 1) or two (1.75 and 2.0 g/kg; Experiment 2) injections of ethanol; an initial administration before being placed on the dowel and in Experiment 2, an additional administration after the first regain of balance on the dowel. Blood samples were taken immediately after loss of balance [when blood ethanol concentrations (BECs) were rising] and at recovery (during falling BECs) in Experiment 1, and after first and second recovery in Experiment 2. It was found that HAP mice fell from the dowel significantly earlier and at lower BECs than LAP mice following the initial injection of ethanol and were therefore more sensitive to its early effects. Furthermore, Experiment 1 detected significantly greater AFT development (BECfalling ? BECrising) in HAP mice when compared with LAP mice, which occurred within ~30 min, supporting our hypothesis. However, AFT was not different between lines in Experiment 2, indicating that ~30–60 min following alcohol administration, AFT development was similar in both lines. These data show that high alcohol drinking genetically associates with both high initial sensitivity and very early tolerance to the ataxic effects of ethanol.  相似文献   

2.
The present study was performed to examine the effects of acute ethanol exposure on N-methyl-D-aspartate (NMDA)-induced responses and the development of acute tolerance in rat rostral ventrolateral medulla (RVLM) in vivo and in vitro. Repeated microinjections of NMDA (0.14 nmol) into the RVLM every 30 min caused reproducible increases in mean arterial pressure in urethane-anesthetized rats weighing 325–350 g. Intravenous injections of ethanol (0.16 or 0.32 g, 1 ml) inhibited NMDA-induced pressor effects in a blood-concentration-dependent and reversible manner. The inhibitory effect of ethanol was reduced over time during continuous infusion of ethanol or on the second injection 3.5 h after prior injection of a higher dose of ethanol (0.32 g). A high dose of ethanol (0.32 g) had no significant effects on-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid,-aminobutyric acid and glycine-induced changes in blood pressure. In vitro studies showed that ethanol (10–100 mM) dose-dependently inhibited inward currents elicited by pressure ejection of NMDA (10 mM) in RVLM neurons of neonatal brainstem slice preparations. When the superfusion time of ethanol (100 mM) was increased to 50 min, its inhibitory effect decreased gradually after 30–40 min in 60% of RVLM neurons examined. These data suggested that ethanol inhibition and subsequent tolerance development is associated with changed sensitivity to NMDA in the RVLM, which may play important roles in the ethanol regulation of cardiovascular function.  相似文献   

3.
Li J  Li YH  Zhang XH  Zhu XJ  Ge YB  Yuan XR 《生理学报》2003,55(2):147-152
采用免疫组织化学的方法,检测急性、慢性乙醇作用及戒断后大鼠伏核内cAMP反应元件结合蛋白(cAMP response element binding protein,CREB)磷酸化的变化。结果显示,急性腹腔注射乙醇后15min,伏核内磷酸化CREB(Phospho-CREB,p-CREB)蛋白明显增加,30min后达高峰,至1和6h后仍明显高于对照组。而慢性饮乙醇溶液显著降低大鼠伏核内P—CREB蛋白含量,在撤除乙醇后24、72h时,伏核内p—CREB蛋白含量仍明显较低,戒断后7d,恢复到正常水平。结果表明,急性乙醇处理增加伏核内CREB磷酸化作用,而慢性乙醇作用则降低伏核内CREB磷酸化作用,这可能是乙醇依赖的分子机制之一。  相似文献   

4.
Ethanol exerts biphasic effects on behavior, stimulant at low doses and depressant at higher doses. In the present study we used two mouse genetic models to investigate the relationships among activating and depressant responses to alcohol. The first model was a panel of nine isogenic genotypes. FAST and SLOW mice, selectively bred for high and low ethanol-induced motor activation, respectively, were used as a second model. We used loss of righting reflex to assess initial sensitivity and acute functional tolerance to a hypnotic dose of ethanol (3 g/kg, 20% v/v). Blood ethanol concentration at the onset of loss of righting reflex was used as an estimate of initial sensitivity, while the difference between concentration values at the recovery and loss of righting represented an acute functional tolerance score. Mean initial sensitivity and acute functional tolerance values of the nine strains were correlated with a previously obtained measure of ethanol-induced locomotor activation. Activation correlated significantly with both initial sensitivity ( r g = 0.80; P < 0.05) and acute functional tolerance ( r g = 0.77; P < 0.05). Thus, inbred genotypes that were activated more by a low dose of ethanol were also more sensitive to and developed more acute tolerance to a high dose. FAST mice had initial sensitivity values similar to those of SLOW mice, but developed more pronounced tolerance, indicating that ethanol-induced activation and acute functional tolerance may be regulated by some common genetic mechanisms. In summary, these results supported a genetic association between ethanol-induced activation and rapid development of tolerance.  相似文献   

5.
Experimental assays analysing EEG changes during the recovery of an acute alcoholic intoxication were carried out in three groups of cats: 1) Recovery of acute alcoholic intoxication produced by continuous intravenous perfusion of ethanol, 0.06 g/kg/min, during 20 minutes. 2) Recovery of acute alcoholic intoxication by injecting naloxone (400 micrograms/kg), just after finishing alcohol perfusion. 3) Recovery of acute alcoholic intoxication by injecting naloxone (400 micrograms/kg), 15 min after finishing perfusion. Naloxone administered after an acute alcoholic intoxication worsens the recovery of EEG parameters; 1-2 (p less than 0.05), 1-3 (p less than 0.05).  相似文献   

6.
Four experiments were conducted to quantify the reported attenuation by microwave (MW) irradiation of ethanol-induced hypothermia. In one experiment rats were irradiated (continuous wave 2.45 GHz, specific absorption rate = 0.3 W/kg) or sham irradiated for 45 min, injected with 3.6 g/kg, 20% (v/v) ethanol (EtOH) or saline (NaCl) i.p.. Colonic temperature was monitored at 20-min intervals for 2 h. This procedure was repeated for 8 days to determine the rate of tolerance development to the hypothermic effect of ethanol. While MW irradiation did significantly attenuate EtOH-induced hypothermia, it did not enhance or retard the rate of tolerance development. To determine the duration of irradiation necessary to attenuate EtOH-induced hypothermia, groups of rats were irradiated or sham irradiated for 5, 15, 30, or 60 min prior to EtOH injection and subsequent temperature measurements. The attenuation was apparent only after 60 min of irradiation. To determine the duration of the attenuation effect after irradiation, rats were injected with EtOH or NaCl at 0, 30, 60, 120, or 480 min after 45 min of irradiation or sham irradiation. The attenuation effect was apparent among rats injected 0 to 30 min after irradiation and for the first 40 min for groups injected at 120 min. Additional rats were injected with NaCl or 0.9, 1.8, or 2.7 g/kg of EtOH i.p. following 45 min of irradiation or sham irradiation to determine if the attenuation effect depends on the dose of EtOH administered. Attenuation of EtOH-induced hypothermia was more apparent at lower doses of EtOH than at higher doses. These results indicate that the effect is an acute response to irradiation, and rule out several other potential explanations.  相似文献   

7.
Göran Wahlström 《Life sciences》1975,17(11):1655-1662
The effect of cyclic 3′5′ adenosine monophosphate (cAMP) on the acute tolerance induced by ethanol was studied in male rats. The acute tolerance was measured with a hexobarbital anesthesia method, where the dose of hexobarbital needed to obtain a burst suppression of 1 second or more in EEG is determined. Ethanol 2.0 g/kg was given ip 0.25 or 3 h prior to the threshold determination. cAMP 10 mg/kg or saline was given iv 6 h prior to the threshold determination.After saline pre-treatment less hexobarbital was needed 0.25 h after ethanol administration compared to 3 h after ethanol administration, although the blood levels were similar. An acute tolerance had developed. Pre-treatment with cAMP had no effect on the dose of hexobarbital needed without ethanol nor on the dose needed 3.0 h after ethanol administration. 0.25 h after ethanol more hexobarbital was needed in the animals pre-treated with cAMP compared with the corresponding saline treated animals. The dose of hexobarbital was as large as the one needed 3.0 h after ethanol. Thus cAMP seems to facilitate the induction of acute tolerance to ethanol while the hexobarbital threshold as such is uninfluenced.  相似文献   

8.
Variation in the acute response to ethanol between individuals has a significant impact on determining susceptibility to alcoholism. The degree to which genetics contributes to this variation is of great interest. Here we show that allelic variation that alters the functional level of NPR-1, a neuropeptide Y (NPY) receptor-like protein, can account for natural variation in the acute response to ethanol in wild strains of Caenorhabditis elegans. NPR-1 negatively regulates the development of acute tolerance to ethanol, a neuroadaptive process that compensates for effects of ethanol. Furthermore, dynamic changes in the NPR-1 pathway provide a mechanism for ethanol tolerance in C. elegans. This suggests an explanation for the conserved function of NPY-related pathways in ethanol responses across diverse species. Moreover, these data indicate that genetic variation in the level of NPR-1 function determines much of the phenotypic variation in adaptive behavioral responses to ethanol that are observed in natural populations.  相似文献   

9.
《Bone and mineral》1990,8(1):1-6
The mechanism of the acute hypocalcemia that follows acute ethanol administration has not been established. Measurements of parathyroid hormone (PTH) performed during this hypocalcemia reveal conflicting results. We compared the response of ionized calcium (Ca2+), immunoreactive PTH and bone Gla protein (BGP) after ethanol- and EDTA-induced hypocalcemia. 103 male Sprague Dawley rats each weighing approximately 300 g received ethanol and 100 rats of similar weight received EDTA. In each of these studies the animals were divided into experimental and control groups. The ethanol-treated rats received ethanol, 2 g/kg body weight, by ip injection and the EDTA-treated rats received 100 mg EDTA/kg body weight by im injection. Controls received normal saline by the corresponding route of administration. Rats were sacrificed at 0, 30, 60, 90, 180 and 360 min for the measurement of the above parameters. In both experimental groups Ca2+ levels were significantly reduced to the same degree by 30 min with return to control values by 360 min. There was no significant difference in immunoreactive PTH, and BGP between control and ethanol-treated groups. In the EDTA-treated rats, however, PTH values were significantly increased at 30 (P < 0.005) and BGP at 60 and 90 minutes (P < 0.005) vs. control. Therefore acute ethanol administration appears to blunt the PTH response to hypocalcemia. A direct inhibitory effect of ethanol on osteoblast function ie BGP production cannot be excluded. In addition, PTH may stimulate BGP.  相似文献   

10.
11.
The effects of chronic ethanol treatment on the membrane order of synaptosomes from the cerebral cortex, striatum, cerebellum, brainstem, and hippocampus of rats were determined by measuring the fluorescence polarization of diphenylhexatriene (DPH) that had been incorporated into the synaptosomal membranes. Fischer-344 rats either were fed a nutritionally complete ethanol-containing liquid diet for 5 months or pair-fed with a diet that contained sucrose substituted isocalorically for ethanol. Polarization values for synaptosomes from all the brain regions studied were similar except for those from cerebral cortical synaptosomal membranes, which were significantly less ordered. Ethanol in vitro (30-500 mM) decreased the polarization values in synaptosomes from sucrose-control rats for all brain regions, although the sensitivity of cerebellar synaptosomes to the membrane disordering effects of ethanol in vitro was significantly greater that of synaptosomes from other brain regions. Chronic ethanol treatment did not alter baseline polarization for any brain region. Cerebellar and brainstem synaptosomes from the ethanol-fed rats were significantly less susceptible to the membrane disordering effects of ethanol in vitro compared to their sucrose controls, suggesting that chronic ethanol administration results in tolerance to ethanol's membrane effects. Striatal synaptosomes exhibited intermediate tolerance, whereas the sensitivities of cortical and hippocampal synaptosomes to membrane disordering by ethanol in vitro were not significantly affected by the chronic ethanol treatment. These results suggest that synaptosomal membranes have different membrane order requirements depending on the brain region from which they are prepared. Variations in brain regional neuronal membrane sensitivity to ethanol and differential tolerance development may contribute to some of the acute and chronic behavioral effects of ethanol.  相似文献   

12.
Reducing the available water in food is a long-established method for controlling bacterial growth in the food industry. Nevertheless, food-borne outbreaks of salmonellosis due to consumption of dry foods have been continuously reported. Previous studies showed that dried Salmonella cells acquire high tolerance to heat and ethanol. In order to examine if dehydration also induces tolerance to other stressors, dried Salmonella enterica serotype Typhimurium cells were exposed to multiple stresses, and their viability was assessed. Indeed, desiccated S. Typhimurium acquired higher tolerance to multiple stressors than nondesiccated cells. The dried cells were significantly more resistant to most stressors, including ethanol (10 to 30%, 5 min), sodium hypochlorite (10 to 100 ppm, 10 min), didecyl dimethyl ammonium chloride (0.05 to 0.25%, 5 min), hydrogen peroxide (0.5 to 2.0%, 30 min), NaCl (0.1 to 1 M, 2 h), bile salts (1 to 10%, 2 h), dry heat (100°C, 1 h), and UV irradiation (125 μW/cm(2), 25 min). In contrast, exposure of Salmonella to acetic and citric acids reduced the survival of the dried cells (1.5 log) compared to that of nondesiccated cells (0.5 log). Three other S. enterica serotypes, S. Enteritidis, S. Newport, and S. Infantis, had similar stress responses as S. Typhimurium, while S. Hadar was much more susceptible and gained tolerance to only a few stressors. Our findings indicate that dehydration induces cross-tolerance to multiple stresses in S. enterica, demonstrating the limitations of current chemical and physical treatments utilized by the food industry to inactivate food-borne pathogens.  相似文献   

13.
The low ethanol tolerance of thermophilic anaerobic bacteria, generally less than 2% (v/v) ethanol, is one of the main limiting factors for their potential use for second generation fuel ethanol production. In this work, the tolerance of thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 to exogenously added ethanol was studied in a continuous immobilized reactor system at a growth temperature of 70°C. Ethanol tolerance was evaluated based on inhibition of fermentative performance e.g. inhibition of substrate conversion. At the highest ethanol concentration tested (8.3% v/v), the strain was able to convert 42% of the xylose initially present, indicating that this ethanol concentration is not the upper limit tolerated by the strain. Long-term strain adaptation to high ethanol concentrations (6–8.3%) resulted in an improvement of xylose conversion by 25% at an ethanol concentration of 5% v/v, which is the concentration required in practice for economically efficient product recovery. For all ethanol concentrations tested, relatively high and stable ethanol yields (0.40–0.42 g/g) were seen. The strain demonstrated a remarkable ethanol tolerance, which is the second highest displayed by thermophilic anaerobic bacteria known to the authors. This appears to be the first study of the ethanol tolerance of these microorganisms in a continuous immobilized reactor system.  相似文献   

14.
The development of tolerance to a drug at the level of the neuron reflects a homeostatic mechanism by which neurons respond to perturbations of their function by external stimuli. Acute functional tolerance (AFT) to ethanol is a fast compensatory response that develops within a single drug session and normalizes neuronal function despite the continued presence of the drug. We performed a genetic screen to identify genes required for the development of acute functional tolerance to ethanol in the nematode C. elegans. We identified mutations affecting multiple genes in a genetic pathway known to regulate levels of triacylglycerols (TAGs) via the lipase LIPS-7, indicating that there is an important role for TAGs in the development of tolerance. Genetic manipulation of lips-7 expression, up or down, produced opposing effects on ethanol sensitivity and on the rate of development of AFT. Further, decreasing cholesterol levels through environmental manipulation mirrored the effects of decreased TAG levels. Finally, we found that genetic alterations in the levels of the TAG lipase LIPS-7 can modify the phenotype of gain-of-function mutations in the ethanol-inducible ion channel SLO-1, the voltage- and calcium-sensitive BK channel. This study demonstrates that the lipid milieu modulates neuronal responses to ethanol that include initial sensitivity and the development of acute tolerance. These results lend new insight into studies of alcohol dependence, and suggest a model in which TAG levels are important for the development of AFT through alterations of the action of ethanol on membrane proteins.  相似文献   

15.
Treatment of Bacillus megaterium cell suspensions with 12 /μmol/1 chlorhexidine diacetate for 5 min led to an approximate 50%, reduction in viability when plated onto tryptone soya agar (TSA). Fifty percent of the surviving fraction were unable to form colonies on TSA containing 5.5% w/v KCI. Such loss of KCl tolerance is indicative of membrane damage, and was recovered within 30 min of incubation in tryptone soya broth (TSB). Multiplication of the damaged organisms did not recommence in this medium until after 60 min. Inclusion of inhibitors of respiration, and of protein, RNA and DNA synthesis in the TSB recovery medium did not significantly affect either the rate or extent of the recovery of KCl tolerance by damaged organisms.  相似文献   

16.
An apparatus is described for the measurement of acute tolerance to ethanol in small animals. Male, Sprague-Dawley rats were trained on the apparatus to leap to a descending platform to avoid being shocked. After an i.p. injection of 2 g/kg ethanol, the rats were tested repeatedly on the apparatus, and the plasma ethanol concentration was measured after each trial. The results demonstrated that the jumping ability of the rats was significantly more impaired during the ascending portion of the plasma ethanol curve than during the descending portion of the curve. Furthermore, it was demonstrated that the improvement in jumping ability during the descending portion of the curve was not dependent on a lowered plasma ethanol concentration. In a second experiment, the possibility of practice effects was eliminated by measuring the jumping ability and plasma ethanol concentration in one group of rats on the ascending portion of the plasma ethanol curve and in another group on the descending portion of the curve. A significant improvement in jumping ability was again observed during the descending portion of the curve, even though the plasma ethanol concentrations of the two groups were comparable. The development of acute tolerance to ethanol was thus demonstrated in both experiments.  相似文献   

17.
Ethanol (1 M) cytotoxicity in asynchronous Chinese hamster ovary cells was strongly temperature dependent, yielding families of cell survival curves between 34 and 39 degrees C that were similar to those obtained at hyperthermic temperatures in medium without ethanol. Below 36 degrees C, survival curves were biphasic, indicating the development of thermotolerance during ethanol exposures. At room temperature (22 degrees C) ethanol was completely nontoxic with incubation periods up to 6 h. A comparison of survival curves with and without ethanol showed that the major effect of ethanol was an effective temperature shift of circa 6.5 degrees C, i.e., the cell survival curve at 37 degrees C in 1 M ethanol was equivalent to that at 43.6 degrees C in medium without ethanol. In addition to the effective temperature shift, ethanol also resulted in sensitization to "heat" with a temperature dependence that was similar to the stepdown heating effect. When thermotolerance was induced with acute ethanol exposures (25 min, 37 degrees C or 60 min, 35.5 degrees C), the kinetics and the magnitude of tolerance were similar to those after isotoxic conditioning treatments with heat alone (10 min, 45 degrees C). In contrast, equimolar ethanol at 22 degrees C did not induce thermotolerance. These data provide a rationale for conflicting results in the literature regarding thermotolerance induction by ethanol. Both heat sensitization and the induction of thermotolerance are interpreted as the effect of ethanol on the solution properties of intracellular water. These solvent alterations reduce the temperature necessary to elicit cytotoxicity and the development of thermotolerance.  相似文献   

18.
Resetting of arterial and arteriolar wall structural components have been studied in the white rat kidney glomeruli after experimental ischemia (30 min, 1-3 h) without blood flow recovery and with the following recirculation for 3-30 days. The experiments have established that acute renal ischemia caused by the vascular leg ligation for 30-60 min without the following blood flow recovery results in slight microstructural alterations of arterial and arteriolar wall elements. With increased ischemia duration (2-3 h) pathological changes become more prominent and separation of vascular endothelial cells and defibering of the internal elastic membrane take place. In transitory (30-60 min) ischemia of the remaining kidney (one kidney is removed) three days later desquamation of endothelial cells occurs in some arteries. Thinning of arterial walls and overstrain of internal elastic membrane are observed. However, later on (in 30 days) short-term ischemia (30 min) is followed by complete recovery of structural components of arterial and arteriolar walls. In more durable ischemia (2-3 h) of the remaining kidney the recovered blood flow causes marked destructive life-threatening changes in vascular walls.  相似文献   

19.
Cultures of S. aureus in 100 mM potassium phosphate buffer heated at 52 C for 15 min lost their tolerance to 7.5% NaCl. After incubation in a complex growth medium or in a diluted dialyzed medium in which unheated cells were unable to grow, salt tolerance was regained. Heat injury caused 30% loss of lipid. During recovery, the concentration of C(15) and C(17) fatty acids returned to normal, and there appeared to be an oversynthesis of C(16) and C(18) unsaturated acids. Penicillin abolished the latter reaction without affecting recovery; chloramphenicol did not affect fatty acid oversynthesis but reduced recovery. The K/Na ratio was 12.6 in control cells and 3.4 in injured cells, where it remained during the recovery of salt tolerance. Aspartate uptake was about 10% of the control level after injury and about 35% at recovery. Control cells grew without a lag on subculture, but injured cells which had regained their salt tolerance needed about 2 more h of incubation. Cells recovering with penicillin needed 6 more h, and cells recovering with chloramphenicol did not grow without a prolonged lag. Cells of S. aureus, therefore, may recover their salt tolerance while various membrane functions are still damaged.  相似文献   

20.
Alcohol addiction is a widespread societal problem, for which there are few treatments. There are significant genetic and environmental influences on abuse liability, and understanding these factors will be important for the identification of susceptible individuals and the development of effective pharmacotherapies. In humans, the level of response to alcohol is strongly predictive of subsequent alcohol abuse. Level of response is a combination of counteracting responses to alcohol, the level of sensitivity to the drug and the degree to which tolerance develops during the drug exposure, called acute functional tolerance. We use the simple and well-characterized nervous system of Caenorhabditis elegans to model the acute behavioral effects of ethanol to identify genetic and environmental factors that influence level of response to ethanol. Given the strong molecular conservation between the neurobiological machinery of worms and humans, cellular-level effects of ethanol are likely to be conserved. Increasingly, variation in long-chain polyunsaturated fatty acid levels has been implicated in complex neurobiological phenotypes in humans, and we recently found that fatty acid levels modify ethanol responses in worms. Here, we report that 1) eicosapentaenoic acid, an omega-3 polyunsaturated fatty acid, is required for the development of acute functional tolerance, 2) dietary supplementation of eicosapentaenoic acid is sufficient for acute tolerance, and 3) dietary eicosapentaenoic acid can alter the wild-type response to ethanol. These results suggest that genetic variation influencing long-chain polyunsaturated fatty acid levels may be important abuse liability loci, and that dietary polyunsaturated fatty acids may be an important environmental modulator of the behavioral response to ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号