首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(adenosine diphosphate [ADP]-ribosyl)ation, although associated with differentiation in many systems, exhibited a reciprocal relationship with mammary gland differentiation, and both the synthetic and degradatory pathways complemented each other in this regard. Poly(ADP-ribosyl)synthetase activity declined during pregnancy and lactation, while poly(ADP-ribose) degradatory activity rose late in pregnancy and peaked during lactation. In explant cultures, similar changes occurred and appeared to be under separate hormonal control; prolactin suppressed the synthetase activity, whereas insulin stimulated the poly(ADP-ribosyl)glycohydrolase activity. This latter effect may be mediated by a decline in cAMP levels for the following reasons: the glycohydrolase is known to be inhibited by cAMp, insulin decreased cAMP concentrations in mammary explants by 70%, and cholera toxin blocked the effects of insulin on poly(ADP-ribose) degradation. This reciprocal relationship between poly(ADP-ribosyl)ation and mammary gland differentiation is further supported by pharmacological studies: in the presence of insulin, cortisol, and prolactin, an inhibitor of the synthetase stimulated alpha-lactalbumin three-fold over hormone stimulation alone. However, this inhibitor was unable to induce differentiation in the absence of prolactin. Therefore, although there is a close association between a decline in enzyme activity and mammary differentiation, the data are insufficient to support a causal relationship.  相似文献   

2.
3.
Until recently, poly(ADP-ribosyl)ation was supposed to be confined only to polymerizing(ADP-ribosyl)transferase/(ADP-ribose)polymerase (E.C. 2.4.2.30). Here, we present novel polymerizing(ADP-ribosyl)transferase homologues from mouse and man that lack all of the N-terminal DNA binding and BRCA1 C-terminus domains and will be designated polymerizing(ADP-ribosyl)transferase-2 as distinguished from the classical polymerizing(ADP-ribosyl)transferase (polymerizing(ADP-ribosyl)transferase-1). The murine polymerizing(ADP-ribosyl)transferase-2 gene shares three identical intron positions with its Caenorhabditis elegans (EMBL nucleotide sequence database Z47075) and one with the Arabidopsis thaliana homologue ('APP', GenBank database AF069298). Expression of the murine polymerizing(ADP-ribosyl)transferase-2 gene was elevated in spleen, thymus and testis and the corresponding poly(ADP-ribosyl)ation activity might account for most of the residual poly(ADP-ribosyl)ation observed in polymerizing(ADP-ribosyl)transferase-1(-/-) mice.  相似文献   

4.
5.
Poly(ADP-ribose) polymerase-1 (PARP-1), nuclear protein of higher eukaryotes, specifically detects strand breaks in DNA. When bound to DNA strand breaks, PARP-1 is activated and catalyzes synthesis of poly(ADP-ribose) covalently attached to the row of nuclear proteins, with the main acceptor being PARP-1 itself. This protein participates in a majority of DNA dependent processes: repair, recombination; replication: cell death: apoptosis and necrosis. Poly(ADP-ribosyl)ation of proteins is considered as mechanism, which signals about DNA damage and modulate protein functioning in response to genotoxic impact. The main emphasis is made on the roles of PARP-1 and poly(ADP-ribosyl)ation in base excision repair (BER), the process, which provides repair of DNA breaks. The main proposed functions of PARP-1 in this process are: factor initiating assemblage of protein complex of BER; temporary protection of DNA ends; modulation of chromatin structure via poly(ADP-ribosyl)ation of histones; signaling function in detection of the levels of DNA damage in cell.  相似文献   

6.
Epigenetic states that allow chromatin fidelity inheritance can be mediated by several factors. One of them, histone variants and their modifications (including acetylation, methylation, phosphorylation, poly(ADP-ribosyl)ation, and ubiquitylation) create distinct patterns of signals read by other proteins, and are strictly related to chromatin remodelling, which is necessary for the specific expression of a gene, and for DNA repair, recombination, and replication. In the framework of chromatin-controlling factors, the poly(ADP-ribosyl)ation of nuclear proteins, catalysed by poly(ADP-ribose)polymerases (PARPs), has been implicated in the regulation of both physiological and pathological events (gene expression/amplification, cellular division/differentiation, DNA replication, malignant transformation, and apoptotic cell death). The involvement of PARPs in this scenario has raised doubts about the epigenetic value of poly(ADP-ribosyl)ation, because it is generally activated after DNA damage. However, one emerging view suggests that both the product of this reaction, poly(ADP-ribose), and PARPs, particularly PARP 1, play a fundamental role in recruiting protein targets to specific sites and (or) in interacting physically with structural and regulatory factors, through highly reproducible and inheritable mechanisms, often independent of DNA breaks. The interplay of PARPs with protein factors, and the combinatorial effect of poly(ADPribosyl)ation with other post-translational modifications has shed new light on the potential and versatility of this dynamic reaction.  相似文献   

7.
Poly(ADP-ribosyl)ation is a reversible post-translational modification that plays an essential role in many cellular processes, including regulation of DNA repair. Cellular DNA damage response by the synthesis of poly(ADP-ribose) (PAR) is mediated mainly by poly(ADP-ribose) polymerase 1 (PARP1). The XPC-RAD23B complex is one of the key factors of nucleotide excision repair participating in the primary DNA damage recognition. By using several biochemical approaches, we have analyzed the influence of PARP1 and PAR synthesis on the interaction of XPC-RAD23B with damaged DNA. Free PAR binds to XPC-RAD23B with an affinity that depends on the length of the poly(ADP-ribose) strand and competes with DNA for protein binding. Using 32P-labeled NAD+ and immunoblotting, we also demonstrate that both subunits of the XPC-RAD23B are poly(ADP-ribosyl)ated by PARP1. The efficiency of XPC-RAD23B PARylation depends on DNA structure and increases after UV irradiation of DNA. Therefore, our study clearly shows that XPC-RAD23B is a target of poly(ADP-ribosyl)ation catalyzed by PARP1, which can be regarded as a universal regulator of DNA repair processes.  相似文献   

8.
9.
10.
G Zardo  S Marenzi  M Perilli  P Caiafa 《FASEB journal》1999,13(12):1518-1522
The aim of this paper is to verify whether the control played by poly(ADP-ribosyl)ation on genomic DNA methylation, and in particular on CpG islands, can also be seen on foreign DNA transfected in cells where inhibition of the poly(ADP-ribosyl)ation process was obtained by treating them with 2 mM 3-aminobenzamide for 24 h. The CpG island-like pVHCk plasmid containing the bacterial chloramphenicol acyltransferase (CAT) gene under the control of SV40 early promoter was transfected in L929 mouse fibroblast cells. The bisulfite reaction, which is capable of immortalizing the methylation state of cytosine on DNA, was performed before amplification of the plasmid DNA fragment, then used for sequence analysis. Our results have shown that 1) when transfected in control cells, the plasmid maintains its characteristic unmethylated pattern, whereas this pattern is lost when the plasmid is transfected in cells treated with 3-aminobenzamide; and 2) the presence of new methyl groups on plasmid DNA is paralleled by a decrease of CAT reporter gene expression. These data confirm that poly(ADP-ribosyl)ation is a process tightly involved in protecting genomic DNA from full methylation and suggest the use of 3-aminobenzamide as a possible experimental strategy to mime other conditions of DNA hypermethylation in cells.  相似文献   

11.
12.
Recent findings concerning the presumed existence of single-strand breaks (SSB) in quiescent human peripheral blood lymphocytes (PBL) are discussed in relation to the role of poly(ADP-ribosyl)ation in DNA strand break metabolism. It is argued that the activation of poly(ADP-ribose)polymerase (ADPRP) by a DNA-damaging agent is not indicative of an obligatory role of poly(ADP-ribosyl)ation in DNA repair. From this it follows that SSB induced by different strand-breaking agents might be removed by either ADPRP-dependent or ADPRP-independent DNA repair pathways.  相似文献   

13.
Poly(ADP-ribose) polymerase specifically recognizes DNA strand breaks by its DNA-binding domain. DNA binding activates the enzyme to catalyze the formation of poly(ADP-ribose) utilizing NAD as substrate. By a molecular genetic approach we set out to inhibit this enzyme activity in a highly specific manner, thus avoiding the inherent side effects of NAD analogs which have been used extensively as enzyme inhibitors. cDNA sequences coding for the human poly(ADP-ribose) polymerase DNA-binding domain were subcloned into eucaryotic expression plasmids and transiently transfected into monkey cells. Cells were fixed with ethanol followed by incubation with NAD. Indirect double immunofluorescence to detect both overexpressed protein and poly(ADP-ribose) in situ revealed that overexpression of the DNA-binding domain greatly inhibited poly(ADP-ribosyl)ation catalyzed by the resident enzyme during NAD postincubation. The same inhibition was observed when transfected cells were treated with N-methyl-N'-nitro-N-nitrosoguanidine to induce DNA strand breaks in vivo and subjected to trichloroacetic acid/ethanol fixation and subsequent immunofluorescence analysis, a novel method we developed for the in situ detection of polymer synthesis in intact cells. This molecular genetic approach may prove to be a selective and efficient tool to investigate possible functions of poly(ADP-ribosyl)ation in living cells.  相似文献   

14.
Poly(ADP-ribosyl)ation is a post-translational modification that is instantly stimulated by DNA strand breaks creating a unique signal for the modulation of protein functions in DNA repair and cell cycle checkpoint pathways. Here we report that lack of poly(ADP-ribose) synthesis leads to a compromised response to DNA damage. Deficiency in poly(ADP-ribosyl)ation metabolism induces profound cellular sensitivity to DNA-damaging agents, particularly in cells deficient for the protein kinase ataxia telangiectasia mutated (ATM). At the biochemical level, we examined the significance of poly(ADP-ribose) synthesis on the regulation of early DNA damage-induced signaling cascade initiated by ATM. Using potent PARP inhibitors and PARP-1 knock-out cells, we demonstrate a functional interplay between ATM and poly(ADP-ribose) that is important for the phosphorylation of p53, SMC1, and H2AX. For the first time, we demonstrate a functional and physical interaction between the major DSB signaling kinase, ATM and poly(ADP-ribosyl)ation by PARP-1, a key enzyme of chromatin remodeling. This study suggests that poly(ADP-ribose) might serve as a DNA damage sensory molecule that is critical for early DNA damage signaling.  相似文献   

15.
CCCTC-binding factor activates PARP-1 affecting DNA methylation machinery   总被引:1,自引:0,他引:1  
Our previous data have shown that in L929 mouse fibroblasts the control of methylation pattern depends in part on poly(ADP-ribosyl)ation and that ADP-ribose polymers (PARs), both present on poly(ADP-ribosyl)ated PARP-1 and/or protein-free, have an inhibitory effect on Dnmt1 activity. Here we show that transient ectopic overexpression of CCCTC-binding factor (CTCF) induces PAR accumulation, PARP-1, and CTCF poly(ADP-ribosyl)ation in the same mouse fibroblasts. The persistence in time of a high PAR level affects the DNA methylation machinery; the DNA methyltransferase activity is inhibited with consequences for the methylation state of genome, which becomes diffusely hypomethylated affecting centromeric minor satellite and B1 DNA repeats. In vitro data show that CTCF is able to activate PARP-1 automodification even in the absence of nicked DNA. Our new finding that CTCF is able per se to activate PARP-1 automodification in vitro is of great interest as so far a burst of poly(ADP-ribosyl)ated PARP-1 has generally been found following introduction of DNA strand breaks. CTCF is unable to inhibit DNMT1 activity, whereas poly(ADP-ribosyl)ated PARP-1 plays this inhibitory role. These data suggest that CTCF is involved in the cross-talk between poly(ADP-ribosyl)ation and DNA methylation and underscore the importance of a rapid reversal of PARP activity, as DNA methylation pattern is responsible for an important epigenetic code.  相似文献   

16.
The role of poly(ADP-ribosyl)ation in the adaptive response   总被引:2,自引:0,他引:2  
An involvement of the poly(ADP-ribosyl)ation system in the expression of the adaptive response has been demonstrated with inhibitors of the nuclear enzyme poly(ADP-ribose) polymerase. This enzyme is a key component of a reaction cycle in chromatin, involving dynamic synthesis and degradation of variably sized ADP-ribose polymers in response to DNA strand breaks. The present report reviews recent work focussing on the response of the poly(ADP-ribosyl)ation system in low dose adaptation. The results suggest that adaptation of human cells to minute concentrations of an alkylating agent involves a different activation mechanism for poly(ADP-ribose) polymerase than DNA break-mediated stimulation after high dose treatment. Moreover, adaptation induces the formation of branched polymers with a very high binding affinity for histone tails and selected other proteins. High dose challenge treatment of adapted cells further enhances formation of branched polymers. We propose that apart from sensing DNA nicks, poly(ADP-ribose) polymerase may be part of pathway protecting cells from downstream events of DNA damage.  相似文献   

17.
The effect of 3-aminobenzamide, a potent inhibitor of poly(ADP-ribosyl)ation, on UV-induced DNA excision repair was investigated. HeLa cells were treated with DNA replication inhibitors, hydroxyurea (HU) and 1-beta-D-arabinofuranosyl cytosine (araCyt), before and after ultraviolet light (UV) irradiation, to accumulate DNA single-strand breaks. The activity of poly(ADP-ribosyl)ation measured in the permeable cell system of HeLa cells was enhanced in a UV dose-dependent manner after the combined treatment with HU and araCyt in vivo. However, DNA repair synthesis in vitro was not affected by addition of 1 mM 3-aminobenzamide or nicotinamide, while incorporation of [3H]NAD in the same system was completely inhibited. Furthermore, neither the magnitude of UV-induced DNA single-strand breaks accumulated by the combined treatment of HU and araCyt nor the rate of their rejoining after release from the HU and araCyt block were influenced even in the presence of 10 mM 3-aminobenzamide. As the cytotoxicity of UV irradiation was significantly potentiated by 5 mM 3-aminobenzamide, these results suggest that poly(ADP-ribosyl)ation is involved in a process other than DNA excision repair induced by UV irradiation.  相似文献   

18.
Protein modification by ADP-ribose polymers is a common regulatory mechanism in eukaryotic cells and is involved in several aspects of brain physiology and physiopathology, including neurotransmission, memory formation, neurotoxicity, ageing and age-associated diseases. Here we show age-related misregulation of poly(ADP-ribose) synthesis in rat cerebellum as revealed by: (i) reduced poly(ADP-ribose) polymerase-1 (PARP-1) activation in response to enzymatic DNA cleavage, (ii) altered protein poly(ADP-ribosyl)ation profiles in isolated nuclei, and (iii) cell type-specific loss of poly(ADP-ribosyl)ation capacity in granule cell layer and Purkinje cells in vivo. In particular, although PARP-1 could be detected in virtually all granule cells, only a fraction of them appeared to be actively engaged in poly(ADP-ribose) synthesis and this fraction was reduced in old rat cerebellum. NAD(+), quantified in tissue homogenates, was essentially the same in the cerebellum of young and old rats suggesting that in vivo factors other than PARP-1 content and/or NAD(+) levels may be responsible for the age-associated lowering of poly(ADP-ribose) synthesis. Moreover, PARP-1 expression was substantially down-regulated in Purkinje cells of senescent rats.  相似文献   

19.
Carbon tetrachloride (CCl(4)) is routinely used as a model compound for eliciting centrilobular hepatotoxicity. It can be bioactivated to the trichloromethyl radical, which causes extensive lipid peroxidation and ultimately cell death by necrosis. Overactivation of poly(ADP-ribose) polymerase-1 (PARP-1) can rapidly reduce the levels of β-nicotinamide adenine dinucleotide and adenosine triphosphate and ultimately promote necrosis. The aim of this study was to determine whether inhibition of PARP-1 could decrease CCl(4)-induced hepatotoxicity, as measured by degree of poly(ADP-ribosyl)ation, serum levels of lactate dehydrogenase (LDH), lipid peroxidation, and oxidative DNA damage. For this purpose, male ICR mice were administered intraperitoneally a hepatotoxic dose of CCl(4) with or without 6(5H)-phenanthridinone, a potent inhibitor of PARP-1. Animals treated with CCl(4) exhibited extensive poly(ADP-ribosyl)ation in centrilobular hepatocytes, elevated serum levels of LDH, and increased lipid peroxidation. In contrast, animals treated concomitantly with CCl(4) and 6(5H)-phenanthridinone showed significantly lower levels of poly(ADP-ribosyl)ation, serum LDH, and lipid peroxidation. No changes were observed in the levels of oxidative DNA damage regardless of treatment. These results demonstrated that the hepatotoxicity of CCl(4) is dependent on the overactivation of PARP-1 and that inhibition of this enzyme attenuates the hepatotoxicity of CCl(4).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号