首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 An approach is presented which probes the possible use of trans-[(NH3)2PtCl]+-modified deoxyoligonucleotides in the antisense strategy. It consists of (1) the selective platination of an oligonucleotide containing 11 pyrimidine (T, C) bases as well as a single guanine (G) as a Pt-anchoring group at the 5′-end to give trans-[(NH3)2Pt{5′-d(GN7T2C2T2C2T2C}Cl]10– 1 ("antisense strand") and (2) subsequent hybridization with the purine 12-mer 5′-d(GA2G2A2G2A2G)11– ("sense strand"). According to HPLC, three major species 24 are formed during reaction (2), all of which are cross-linking adducts between 1 and the sense strand, as confirmed by ESI MS and melting temperature measurements. Only for the major product 3 can a structure be proposed on the basis of 1D and 2D NMR spectra. According to these, G1 of the antisense strand is cross-linked with G20 via trans-(NH3)2PtII. The complementary overhangs of the duplex represent "sticky ends" and are, in principle, capable of associating into multimers of the duplex. Received: 29 March 1999 / Accepted: 26 July 1999  相似文献   

2.
 The structure of the second major adduct formed by the antitumor drug cisplatin with DNA, the intrastand cis–Pt(NH3)2{d(ApG)N7N7} chelate (A*G*), has been investigated using a double-stranded nonanucleotide, d(CTCA*G*CCTC)-d(GAGGCTGAG), by means of NMR and molecular modeling. The NMR data allow us to conclude that the oligonucleotide is kinked at the platinated site towards the major groove in a way similar to that observed elsewhere for the G*G*-crosslink in d(GCCG*G*ATCGC)-d(GCGATCCGGC). The main difference concerns the position of the thymine T(15) complementary to the platinated adenine A*(4). It remains stacked on its 5′-neighbor C(14), corresponding to the "model E" described previously, whereas in the G*G*-adduct, the cytosine facing the 5′-G* was found to oscillate between the 5′-branch ("model E") and the 3′-branch ("model C") of the complementary strand. Two "E-type" models are presented which account for the particular NOE connectivity and for two remarkable upfield NMR signals: those of the H2′ proton of the cytidine C(3) 5′ to the A*G* chelate, and of the H3 imino proton of T(15), the base complementary to A*(4). The former shift is attributed to shielding by the destacked A*(4) base, whereas the latter is accounted for by a swinging movement of the T(15) base between two positions where the imino Watson-Crick hydrogen bond with A*(4) remains intact and the amino hydrogen bond is disrupted, or vice versa. Possible implications of the structural difference between the AG and GG adducts of cisplatin in the mutagenic properties of the two adducts are discussed. Received: 19 August 1996 / Accepted: 4 November 1996  相似文献   

3.
Combined multidimensional nuclear magnetic resonance spectroscopy and electrospray mass spectrometry was used to analyze the platinated DNA adduct of the phase II anticancer drug [{trans-PtCl(NH3)2}2-μ-{trans-Pt(NH3)2(NH2(CH2)6NH2)2}](NO3)4 (BBR3464) with [5′-d(ACG*TATACG*T)-3′]2. Two 1,2-interstrand cross-links were formed by concomitant binding of two trinuclear moieties to the oligonucleotide. The four DNA-bound platinum atoms coordinated in the major groove at N7 positions of guanines in the 3′ → 3′ direction and the central platinum unit is expected to lie in the DNA minor groove. This is the first report of such a DNA lesion. The melting temperature of the adduct is 76 °C and is 42 °C higher than that of the unplatinated DNA. The sugar residues of the platinated bases are in the N-type conformation and the G9 nucleoside is in the syn orientation, while the G3 nucleoside appears to retain the anti configuration. The secondary structure of DNA was significantly changed upon cross-linking of the two BBR3464 molecules. Base destacking occurs between A1/C2 and C2/G3 and weakened stacking is seen for the C8/G9 and G9/T10 bases. The lack of Watson–Crick base pairing is also seen for A1–T10 and C2–G9 base pairs, whereas Watson–Crick base pairs in the central sequence of the DNA (T4 → A7) are well maintained. While DNA repair proteins may “see” different platinated adducts as bulky “lesions”, the subtle differences involved in base pairing and stacking, as summarized here, may extend to their role as a substrate for repair enzymes. Thus, differences in protein recognition and repair efficiency among the various interstrand cross-links are likely and a subject worthy of detailed exploration. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Platinum complexes which are known to react preferentially with guanine (G) and adenine (A) bases of oligonucleotides can be used as tools to analyze their tertiary structures and eventually to cross-link them. However, this requires efficient methods to allow the identification and quantification of the corresponding adducts which have so far been developed only for oligodeoxyribonucleotides. Maxam-Gilbert type digestions cannot be used for RNAs and HPLC techniques would require too large amounts of expensive material for separation and further characterization. We report a method to determine platination sites on oligoribonucleotides based on the cleavage activity of ribonucleases T1 and U2. To test the method, these enzymes were first used under conditions of limited digestion on 5-mer oligoribonucleotides platinated at a single defined purine. The phosphodiester bond on the 3 side of platinated G or A appeared fully resistant to cleavage by ribonuclease T1 or U2, respectively. An inhibitory effect was also observed due to neighboring platinated purines, which decreases with their distance (−2, −1, +1, +2) from the cleavage site and with the enzyme concentration. The method allowed the identification and quantification of the platination sites of a 17-mer oligoribonucleotide, based on the analysis of the mixture of monoplatinated adducts.  相似文献   

5.
 Salmon sperm DNA platination has been conducted under strictly pseudo-first-order conditions with cisplatin (1) and rac-{(1S,2S,4S)-exo-2-(aminomethyl)-2-amino-7-bicyclo[2.2.1]heptane}dichloroplatinum(II) (2). An aquation step first occurs for both complexes, with the rate constants k 1 = 1.12(0.02)×10–4 s–1 and 1.47(0.02)×10–4 s–1 respectively for 1 and 2 at 37  °C, values in agreement with those previously reported. It is followed by the actual platination step whose second-order rate constant has been determined for the first time by physicochemical techniques. The values for 1 and 2 respectively are: k 2 = 2.08(0.07) M–1 s–1 and 3.9(0.4) M–1 s–1. These kinetic data are discussed in the context of a comparison of several biological properties of the two complexes. Received: 15 May 1998 / Accepted: 26 June 1998  相似文献   

6.
 The present model study explores the chemistry of methionine complexes and ternary methionine-guanine adducts formed by trans-[PtCl2(NH3)2] (1) and antitumor trans-[PtCl2(NH3)quinoline] (2) using 1D (1H, 195Pt) and 2D NMR spectroscopy. Compound 2 was substitution inert in reactions with N-acetyl-lmethionine [AcMet(H)]. Reactions of trans-[PtCl(NO3)(NH3)quinoline] (5) ("monoactivated" 2) with AcMetH in water and acetone at various stoichiometries point to Pt(II)-S binding that requires prior activation of the Pt-Cl bond by labile oxygen donors. Trans-[PtCl{AcMet(H)-S}(NH3)quinoline](NO3) (6) and trans-[Pt{AcMet(H)-S}2(NH3)quinoline](NO3)2 (7) were isolated from these mixtures. At high [Cl], AcMet(H) is displaced from 7, giving 6. Frozen stereodynamics in 6 at the thioether-S and slow rotation about the Pt-Nquinoline bond result in four spectroscopically distinguishable diastereomers. 1H NMR spectra of 7 show faster exchange dynamics due to mutual trans-labilization of the sulfur donors. Substitution of chloride in trans-[PtCl(9-EtGua)(NH3)L]NO3 (L=NH3, 3; L=quinoline, 4; 9-EtGua=9-ethylguanine, which mimics the first DNA binding step of 1 and 2) by methionine-sulfur proceeded ca. 2.5 times slower for the quinoline compound. Both reactions, in turn, proved to be ca. 4 times faster than binding of a second nucleobase under analogous conditions. From the resulting mixtures the ternary adducts trans-[Pt(AcMet-S)(9-EtGua-N7)(NH3)L](NO3, Cl) (L=NH3, 8; L=quinoline, 9) were isolated. A species analogous to 9 formed in a rapid reaction between 6 and 5′-guanosine monophosphate (5′-GMP). From NMR data an AMBER-based solution structure of the resulting adduct, trans-[Pt(AcMet-S)(5′-GMP-N7)(NH3)quinoline] (10), was derived. The unusual reactivity along the N7-Pt-S axis in 8–10 resulted in partial release of both 9-EtGua and AcMet at high [Cl]. Possible consequences of the kinetic and structural effects (e.g., trans effect of sulfur, steric demand of quinoline) observed in these systems with respect to the (trans)formation of potential biological cross-links are discussed. Received: 25 May 1998 / Accepted: 6 August 1998  相似文献   

7.
A novel platinum–quinacridine hybrid, comprising a monofunctional Pt moiety and a G-quadruplex ligand (mono-para-quinacridine or MPQ), has been synthesized and shown to interact with quadruplex DNA via a dual noncovalent/covalent binding mode. Denaturing gel electrophoresis was used to separate the various platination products of 22AG (an oligonucleotide that mimics the human telomeric repeat) by Pt-MPQ, and it was shown that two platinated adducts are highly stable quadruplex structures. Dimethylsulfate/piperidine treatment and 3′-exonuclease digestion of the isolated adducts allowed us to precisely determine the platination pattern of 22AG by Pt-MPQ, which displays three main sites G2, G10 and G22. Data presented herein support the hypothesis that Pt-MPQ traps preferentially the antiparallel structure of the 22AG quadruplex. Finally, the kinetics of Pt-MPQ platination using a construct containing both quadruplex DNA and a duplex DNA parts provide the first insights into the Pt-MPQ preference for quadruplex DNA over duplex DNA.  相似文献   

8.
The 3′ half molecule of yeast tRNAAla (nucleotides 36–75) was hybridized with a DNA fragment (5′GGAATCGAACC 3′) and the hybrid was then digested withE. coli RNase H (from Boehringer). The enzyme can specifically cleave the 3′ half molecule at the 3′ side of nucleotide Ψ55, thus a fragment C3655 was prepared. The 3′-terminal T or TΨ of this fragment was removed by one or two cycles of periodate oxidation and β-elimination. The products were fragments C36-T54 and C36-G53. Three yeast tRNAAla fragments C56-A76, U55-A76 (with Ψ55 replaced by U), U54-A76 (with T54Ψ55 replaced by UU) were synthesized and ligated with three prepared fragments (C3655, C36-T54 and C36-G53) respectively by T4 RNA ligase. The products were further ligated with the 5′ half molecule (nu-cleotides 1–35). Using this method, one reconstituted yeast tRNAAla (tRNAr) and two yeast tRNAALa analogs: (i) tRNAa with U55 instead of Ψ55; (ii) tRNAb with U54U55 instead of T54Ψ55 were synthesized. The charging and incorporation activities of these three tRNAs were determined. In comparison with the reconstituted tRNA, the charging activity was 75% for tRNAa and 45% for tRNAb and the incorporation activity was 65% for tRNAa and 70% for tRNAb. These results suggest that the modified nucleotides T54 and Ψ55 play an important role in yeast tRNAAla function. Project supported by the National Natural Science Foundation of China.  相似文献   

9.
N,N′-Pyromelliticdiimido-di-l-amino acids (1a1d) were prepared from the reaction of pyromellitic dianhydride with the corresponding l-amino acids in a solution of glacial acetic acid/pyridine (3:2) at refluxing temperature. 4,4′-sulfonyl bis(4,1-phenylene) bis(diazene-2,1-diyl) diphenol, 4,4′-oxy bis(4,1-phenylene) bis(diazene-2,1-diyl) diphenol and 4,4′-methylene bis(4,1-phenylene) bis(diazene-2,1-diyl) diphenol, were prepared from 4,4′-diamino diphenyl sulfone, 4,4′-diamino diphenyl ether, 4,4′-diamino diphenyl methane, sodium nitrite and phenol following the general procedure of diazo coupling. Interfacial polycondensation method was used to prepare the corresponding poly(azo-ester-imid)s (PAEI 1–12 ) in biphasic solution of water/dichloromethane. The resulting polymers (PAEIs) have been obtained in high yields having good inherent viscosities (0.32–0.57 dl g−1), optical activities and thermal stabilities.  相似文献   

10.
The DNA interference pathways exhibited by cisplatin and related anticancer active metal complexes have been extensively studied. Much less is known to what extent RNA interaction pathways may operate in parallel, and perhaps contribute to both antineoplastic activity and toxicity. The present study was designed with the aim of comparing the reactivity of two model systems comprising RNA and DNA hairpins, r(CGCGUUGUUCGCG) and d(CGCGTTGTTCGCG), towards a series of platinum(II) complexes. Three platinum complexes were used as metallation reagents; cis-[PtCl(NH3)2(OH2)]+ (1), cis-[PtCl(NH3)(c-C6H11NH2)(OH2)]+ (2), and trans-[PtCl(NH3)(quinoline)(OH2)]+ (3). The reaction kinetics were studied at pH 6.0, 25 °C, and 1.0 mM ≤ I ≤ 500 mM. For both types of nucleic acid targets, compound 3 was found to react about 1 order of magnitude more rapidly than compounds 1 and 2. Further, all platinum compounds exhibited a more pronounced salt dependence for the interaction with r(CGCGUUGUUCGCG). Chemical and enzymatic cleavage studies revealed similar interaction patterns with r(CGCGUUGUUCGCG) after long exposure times to 1 and 2. A substantial decrease of cleavage intensity was found at residues G4 and G7, indicative of bifunctional adduct formation. Circular dichroism studies showed that platinum adduct formation leads to a structural change of the ribonucleic acid. Thermal denaturation studies revealed platination to cause a decrease of the RNA melting temperatures by 5–10 °C. Our observations therefore suggest that RNA is a kinetically competitive target to DNA. Furthermore, platination causes destabilization of RNA structural elements, which may lead to deleterious intracellular effects on biologically relevant RNA targets.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

11.
A restriction enzyme cleavage inhibition assay was designed to determine the rates of DNA platination by four non-cross-linking platinum–acridine agents represented by the formula [Pt(am2)LCl](NO3)2, where am is a diamine nonleaving group and L is an acridine derived from the intercalator 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea (ACRAMTU). The formation of monofunctional adducts in the target sequence 5′-CGA was studied in a 40-base-pair probe containing the EcoRI restriction site GAATTC. The time dependence of endonuclease inhibition was quantitatively analyzed by polyacrylamide gel electrophoresis. The formation of monoadducts is approximately 3 times faster with double-stranded DNA than with simple nucleic acid fragments. Compound 1 (am2 is ethane-1,2-diamine, L is ACRAMTU) reacts with a first-order rate constant of k obs = 1.4 ± 0.37 × 10−4 s−1 (t 1/2 = 83 ± 22 min). Replacement of the thiourea group in ACRAMTU with an amidine group (compound 2) accelerates the rate by fourfold (k obs = 5.7 ± 0.58 × 10−4 s−1, t 1/2 = 21 ± 2 min), and introduction of a propane-1,3-diamine nonleaving group results in a 1.5-fold enhancement in reactivity (compound 3, k obs = 2.1 ± 0.40 × 10−4 s−1, t 1/2 = 55 ± 10 min) compared with the prototype. Derivative 4, containing a 4,9-disubstituted acridine threading intercalator, was the least reactive compound in the series (k obs = 1.1 ± 0.40 × 10−4 s−1, t 1/2 = 104 ± 38 min). The data suggest a correlation may exist between the binding rates and the biological activity of the compounds. Potential pharmacological advantages of rapid formation of cytotoxic monofunctional adducts over the common purine–purine cross-links are discussed.  相似文献   

12.
The chaperone protein CopC from Pseudomonas syringae features high-affinity binding sites (K D ~ 10−13 M) for both CuI (Met-rich) and CuII (His-rich). When presented with these sites in the apoprotein, electrospray ionisation mass spectrometry confirmed that cis-Pt(NH3)2Cl2 (cisplatin) and the fragments [PtIIL]2+ (L is 1,2-diaminoethane, 2,2′-bipyridine) occupied the CuI site specifically in the 1:1 Pt–CopC adducts (purified by cation-exchange chromatography). The cis-Pt(NH3)2 fragment was not present in these adducts (the dominant product for cisplatin was Pt–CopC in which all original ligands were displaced), while bidentate ligands L were retained in LPt–CopC adducts. In the context of the Met-rich CuI pump Ctr1 as a significant entry point for cisplatin into mammalian cells, the present work confirms the ability of Met-rich sites in proteins to remove all ligands from cisplatin. It focuses attention on the potential of proteins that are part of the natural copper transport pathways to sequester the drug. These pathways are worthy of further study at the molecular level. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
 Reactions of [Pt(1-MeC-N3)3Cl]NO3 (1-MeC-N3=1-methylcytosine, bound to Pt via N3) and the respective aqua species [Pt(1-MeC-N3)3(H2O)]2+ with the model nucleobases 9-ethylguanine (9-EtGH), 9-methyladenine (9-MeA), single-stranded 5′d(T3GT3), and double-stranded [5′d(GAGA2GCT2CTC)]2 have been studied in solution by means of 1H NMR spectroscopy, HPLC, and electrospray ionization mass spectrometry. Reactions are generally slow, in particular with the chloro species, and guanine is the only reactive base in the oligonucleotides. However, unlike (dien)PtII, which binds randomly to the guanines in the ds dodecamer, (1-MeC-N3)3PtII binds selectively to the terminal guanine only, probably because base fraying takes place at the duplex ends. The X-ray crystal structures of [Pt(1-MeC-N3)3(9-EtG-N7)]ClO4·8H2O (1b) and of [Pt(1-MeC-N3)3(9-MeA-N7)](ClO4)2·0.5H2O as well as NMR spectroscopic studies of [Pt(1-MeC-N3)3(9-EtGH-N7)] (NO3)2·H2O (1a) are reported. The tetrakis(nucleobase) complexes adopt a head-tail-head orientation of the three 1-MeC bases and an orientation of the fourth base (purine) that permits a maximum of intracomplex H bonds between exocyclic groups. As far as the guanine adduct (1a, 1b) is concerned, relative orientations of the four bases are identical in the model and in the oligonucleotide adduct. Received: 19 June 1998 / Accepted: 1 October 1998  相似文献   

14.
Sulfite-oxidizing enzyme activities were analyzed in cell-free extracts of aerobically grown cells of Acidianus ambivalens, an extremely thermophilic and chemolithoautotrophic archaeon. In the membrane and cytoplasmic fractions, two distinct enzyme activities were found. In the membrane fraction, a sulfite:acceptor oxidoreductase activity was found [530 mU (mg protein)–1; apparent K m for sulfite, 3.6 mM]. In the cytoplasmic fraction the following enzyme activities were found and are indicative of an oxidative adenylylsulfate pathway: adenylylsulfate reductase [138 mU (mg protein)–1], adenylylsulfate:phosphate adenyltransferase [“ADP sulfurylase”; 86 mU (mg protein)–1], adenylate kinase [650 mU (mg protein)–1], and rhodanese [thiosulfate sulfur transferase, 9.2 mU (mg protein)–1]. In addition, 5′,5′′′-P1,P4-di(adenosine-5′) tetraphosphate (Ap4A) synthase and Ap4A pyrophosphohydrolase activities were detected. Received: 17 August 1998 / Accepted: 29 April 1999  相似文献   

15.
Kogawa K  Kato N  Kazuma K  Noda N  Suzuki M 《Planta》2007,226(6):1501-1509
A UDP-glucose: anthocyanin 3′,5′-O-glucosyltransferase (UA3′5′GT) (EC 2.4.1.-) was purified from the petals of Clitoria ternatea L. (Phaseoleae), which accumulate polyacylated anthocyanins named ternatins. In the biosynthesis of ternatins, delphinidin 3-O-(6″-O-malonyl)-β-glucoside (1) is first converted to delphinidin 3-O-(6″-O-malonyl)-β-glucoside-3′-O-β-glucoside (2). Then 2 is converted to ternatin C5 (3), which is delphinidin 3-O-(6″-O-malonyl)-β-glucoside-3′,5′-di-O-β-glucoside. UA3′5′GT is responsible for these two steps by transferring two glucosyl groups in a stepwise manner. Its substrate specificity revealed the regioselectivity to the anthocyanin′s 3′- or 5′-OH groups. Its kinetic properties showed comparable k cat values for 1 and 2, suggesting the subequality of these anthocyanins as substrates. However, the apparent K m value for 1 (3.89 × 10−5 M), which is lower than that for 2 (1.38 × 10−4 M), renders the k cat/K m value for 1 smaller, making 1 catalytically more efficient than 2. Although the apparent K m value for UDP-glucose (6.18 × 10−3 M) with saturated 2 is larger than that for UDP-glucose (1.49 × 10−3 M) with saturated 1, the k cat values are almost the same, suggesting the UDP-glucose binding inhibition by 2 as a product. UA3′5′GT turns the product 2 into a substrate possibly by reversing the B-ring of 2 along the C2-C1′ single bond axis so that the 5′-OH group of 2 can point toward the catalytic center. K. Kogawa, N. Kato, K. Kazuma, and N. Noda contributed equally to this work.  相似文献   

16.
The intermolecular interaction energies in central guanine triad of telomeric B-DNA were estimated based on ab initio quantum chemistry calculations on the MP2/aDZ level of theory. The source of structural information was molecular dynamics simulation of both canonical (AGGGTT) and oxidized (AG8oxoGGTT) telomere units. Our calculations demonstrate that significant stiffness of central triad occurs if 8oxoG is present. The origin of such feature is mainly due to the increase of stacking interactions of 8oxoG with neighbouring guanine molecules and stronger hydrogen bonding formation of 8oxoG with cytosine if compared with canonical guanine. Another interesting observation is the context independence of stacking interactions of 8oxoG. Unlike to 5′-G2/G3-3′ and 5′-G3/G4-3′ sequences which are energetically different, 5′-G2/8oxoG3-3′ and 5′-8oxoG3/G4-3′ sequences are almost iso-energetic.  相似文献   

17.
(1) Little information exists on the role of clustered Hox genes in oligodendrocyte (OG) development. This study examines the expression profile of Hoxd1 and identifies a potential downstream target in the OG lineage. (2) Immunocytochemical analysis of primary mixed glial cultures demonstrated Hoxd1 was expressed throughout OG development. (3) A human myelin protein gene, myelin oligodendrocyte glycoprotein (MOG), was identified as a putative downstream target of Hoxd1 through Genbank searches utilizing the Hoxd1 homeodomain consensus binding sequence. (4) The dissociation coefficient constant (K D) and dissociation rate constant (k d) of the Hoxd1–MOG complex, determined using electrophoretic mobility shift assays (EMSAs), were estimated to be 1.9 × 10−7 M and 1.3 × 10−3 s−1, respectively. The DNA–Hoxd1 homeodomain complex had a half-life (t 1/2) of 15 min. (5) Mutational analysis of Hoxd1–MOG complexes revealed the binding affinity of M1 (with mutation from −10545′-TAAT-3′−1051 to TACT within the consensus binding site) and M2 (with mutation from -10545′-TAATTG-3′-1049 to TAATCC within the consensus binding site) probes to the MOG promoter was severely affected. Thus the TAATTG core of the binding sequence appears important for Hoxd1 specificity. (6) Analysis of the involvement of TAAT sites adjacent to the consensus sequence in Hoxd1 binding showed the binding affinity of the M3 probe was affected, but not as severely as the M1 and M2 probes. These in vitro results suggest the TTTAATTGTA sequence is involved in Hoxd1 binding to the MOG promoter but neighboring TAAT sites may also be needed. Thus, MOG may be a target of Hoxd1.  相似文献   

18.
The stability of the tri–μ–hydrido–bis[(η5–C5Me5)aluminum], Cp*2Al2H3, 1 is studied at B3LYP/6–311+G(d,p), CCSD(T)//B3LYP/6–311+G(d,p) and MP4//B3LYP/6–311+G(d,p) levels. The coordination between Al2H3 entity and both C5(CH3)5 groups is ensured by strong electrostatic and orbital interactions. The orbital analysis of the interacting fragments shows that Al2H3 acceptor, which keeps its tribridged structure, implies the vacant ( \texta1¢ ) \left( {{\text{a}}_1^\prime } \right) and five antibonding (a2¢¢ a_2^{\prime \prime } , e′ and e″) molecular orbitals to interact with two orbitals mixtures, b1 and e" of the donors (C5Me5). When we take into account the solvent effect, the computation shows that 1 seems to be stable in condensed phase with a tribridged bond between the Al atoms [Cp*Al(μ-H)3AlCp*], whereas in the gas phase, the monobridged Cp*AlH(μ-H)AlHCp* 4 is slightly favored (4 kcal mol−1). We propose that 1 could be prepared thanks to Cp*Al (2) and Cp*AlH2 (3) reaction in acidic medium. The experimental treatment of this type of metallocenes would contribute to the development of the organometallic chemistry of 13th group elements.   相似文献   

19.
Exposure of deaerated folic acid solutions containing an electron donor to UV radiation (310–390 nm, I = 0.4 W m−2) induced formation of dihydrofolic acid (DHFA), a photoexcitation which gave tetrahydrofolic acid (THFA). Only DHFA was formed in the presence of EDTA (Eo = +0.40 V), while the presence of stronger reductants—NADH (Eo = −0.32 V) and boron hydride (Eo = −0.48 V)—induced photoreduction to THFA. It was demonstrated that UV radiation had no effect on the THFA formylation, giving the coenzyme 5,10-methenyltetrahydrofolic acid and its transformation into another coenzyme, 5-formyltetrahydrofolic acid.  相似文献   

20.
The number of phosphate groups in the 5′,5′-polyphosphate bridge of mRNA-cap dinucleotide analogues affects kinetics of long-range electron transfer (ET) responsible for 3-methylbenzimidazole (m3B) fluorescence quenching in model dinucleotides. For instance, 3-methylbenzimidazolyl(5′-5′)guanosine dinucleotides (m3Bp n G, n = 2, 3, 4) having m3B donor, 5′-5′ polyphosphate bridge, and guanine (G) acceptor, exhibit exponential dependence of the ET rate on the number of phosphates, i.e. donor–acceptor distance. Involvement of the 5′-5′ polyphosphate bridge in the ET is strongly indicated by lack of m3B-G stacking effect on the exponential factor, which is the same at 20°C, where m3B-G intramolecular stacking dominates, as that at 75°C where stacking–unstacking equilibrium is shifted in favour of the unstacked structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号