首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The temperature sensitivity of Saccharomycescerevisiae and the conditions of moderate heat pretreatment required to induce thermotolerance are established. Ethanol is identified as an inducer of heat shock proteins and an inducer of thermotolerance.  相似文献   

2.
The effects of ethanol on liver, kidney and intestine monooxygenases were studied using hamsters chronically fed with isocaloric control and ethanol-containing liquid diets. The inductive effects of ethanol on liver and kidney aniline hydroxylase activities began to approach plateau level after the animals were fed ethanol for two weeks. Intestinal aniline hydroxylation was refractory to ethanol induction. In control and ethanol-fed hamsters, CO-difference spectra of hepatic and extrahepatic microsomes differed in absorption maxima. Chronic alcohol consumption caused significant increases of cytochrome P-450 and cytochrome b5 contents of liver and kidney microsomes. The increases of the heme proteins were associated with the induction of aniline hydroxylase, N-nitrosodimethylamine demethylase and 7-ethoxycoumarin 0-deethylase activities. In contrast to the liver and kidney, intestinal microsomal cytochromes P-450 and b5 contents in ethanol-treated animals were lower than the controls. Ethanol pretreatment was without effect on intestinal monooxygenase activities toward the metabolism of aniline, N-nitrosodimethylamine, 7-ethoxycoumarin and benzo(a)pyrene. Gel electrophoresis of tissue microsomes from control and ethanol-treated hamsters revealed that ethanol treatment enhanced the intensity of the protein band(s) in the cytochrome P-450 molecular weight region in the liver and kidney, but not in the intestine. These results demonstrate that in hamsters the response of monooxygenase to ethanol may vary from tissue to tissue and it is difficult to make a generalization regarding the inducing property of ethanol. The differential effect on cytochrome P-450 may be an important factor in determining the interaction between ethanol and xenobiotic metabolism in animal tissues.  相似文献   

3.
Synthesis of a family of proteins called “heat shock” proteins is enhanced in cells in response to a wide variety of environmental stresses. This suggests that these proteins may have functions essential to cell survival under stressful conditions. A causative relationship between heat shock protein synthesis and development of thermotolerance would imply that agents known to induce heat shock protein synthesis, such as sodium arsenite, also induce thermotolerance. Conversely, agents known to induce thermotolerance, such as ethanol, would also enhance heat shock protein synthesis. To test this hypothesis, I have examined the effect of sodium arsenite or ethanol treatment on protein synthesis and cell survival in Chinese hamster ovary HA-1 cells. After either sodium arsenite or ethanol treatment, the synthesis of heat shock proteins was greatly enhanced over that of untreated cells. In parallel, cell survival was increased as much as 104-fold when cells exposed to either agent were challenged by a subsequent heat treatment. The synthesis of heat shock proteins correlated well with the development of thermotolerance. A qualitative analysis of individual proteins suggests that the synthesis of 70,000 and 87,000 molecular weight proteins most closely mirrored the development of thermotolerance. The results, therefore, strongly reinforce the hypothesis that a causal relationship exists between the enhanced synthesis of heat shock protein and cell survival under specific stresses.  相似文献   

4.
Saccharomyces cerevisiae strains tolerant to ethanol and heat stresses are important for industrial ethanol production. In this study, five strains (Tn 1–5) tolerant to up to 15% ethanol were isolated by screening a transposon-mediated mutant library. Two of them displayed tolerance to heat (42 °C). The determination of transposon insertion sites and Northern blot analysis identified seven putative genes (CMP2, IMD4, SSK2, PPG1, DLD3, PAM1, and MSN2) and revealed simultaneous down-regulations of CMP2 and IMD4, and SSK2 and PPG1, down-regulation of DLD3, and disruptions of the open reading frame of PAM1 and MSN2, indicating that ethanol and/or heat tolerance can be conferred. Knockout mutants of these seven individual genes were ethanol tolerant and three of them (SSK2, PPG1, and PAM1) were tolerant to heat. Such tolerant phenotypes reverted to sensitive phenotypes by the autologous or overexpression of each gene. Five transposon mutants showed higher ethanol production and grew faster than the control strain when cultured in rich media containing 30% glucose and initial 6% ethanol at 30 °C. Of those, two thermotolerant transposon mutants (Tn 2 and Tn 3) exhibited significantly enhanced growth and ethanol production compared to the control at 42 °C. The genes identified in this study may provide a basis for the application in developing industrial yeast strains.  相似文献   

5.
Hyperthermia, CdCl2, sodium arsenite, and H2O2 led to the rapid appearance of high levels of peroxidase in Neurospora crassa cultures and induced tolerance toward normally lethal temperatures in 60-h-old colonies. Intracellular superoxide dismutase levels did not correlate with the development of thermotolerance.  相似文献   

6.
To increase thermotolerance and ethanol tolerance in Saccharomyces cerevisiae strain YZ1, the strategies of high-energy pulse electron beam (HEPE) and three rounds of protoplast fusion were explored. The YF31 strain had the characteristics of resistant to high-temperature, high-ethanol tolerance, rapid growth and high yield. The YF31 could grow on plate cultures up to 47?°C, containing 237.5?g?L?1 of ethanol. In particular, the mutant strain YF31 generated 94.2?±?4.8?g?L?1 ethanol from 200?g glucose L?1 at 42?°C, which was 2.48 times the production of the wild strain YZ1. Results demonstrated that the variant phenotypes from the strains screening by HEPE irradiation could be used as parent stock for yeast regeneration and the protoplast fusion technology is sufficiently powerful in combining suitable characteristics in a single strain for ethanol fermentation.  相似文献   

7.
8.
The induction of the inducible lysyl-tRNA synthetase, LysU, and the inducible lysine and arginine decarboxylases of Escherichia coli K-12 grown in AC broth to a pH of 5.5 or less is temperature dependent, being distinctly lower at 24 than at 37 degrees C. This induction does not appear to be under HtpR control.  相似文献   

9.
The induction of the inducible lysyl-tRNA synthetase, LysU, and the inducible lysine and arginine decarboxylases of Escherichia coli K-12 grown in AC broth to a pH of 5.5 or less is temperature dependent, being distinctly lower at 24 than at 37 degrees C. This induction does not appear to be under HtpR control.  相似文献   

10.
The hyperthermophilic archaeon, Pyrococcus furiosus, grows optimally near 100 °C by fermenting sugars to acetate, carbon dioxide and molecular hydrogen as the major end products. The organism has recently been exploited to produce biofuels using a temperature-dependent metabolic switch using genes from microorganisms that grow near 70 °C. However, little is known about its metabolism at the lower temperatures. We show here that P. furiosus produces acetoin (3-hydroxybutanone) as a major product at temperatures below 80 °C. A novel type of acetolactate synthase (ALS), which is involved in branched-chain amino acid biosynthesis, is responsible and deletion of the als gene abolishes acetoin production. Accordingly, deletion of als in a strain of P. furiosus containing a novel pathway for ethanol production significantly improved the yield of ethanol. These results also demonstrate that P. furiosus is a potential platform for the biological production of acetoin at temperatures in the 70–80 °C range.  相似文献   

11.
12.
Two-dimensional gel electrophoretic analysis of the heat shock response in the psychrotrophic yeastTrichosporon pullulans revealed the induction of 11 heat shock proteins (hsps) after a 5° to 21°C heat shock, 12 hsps after a 5° to 26°C heat shock, and 12 hsps after a 5° to 29°C heat shock. Heat shock from 5° to 26° or 29°C resulted in a statistically significant increase in thermotolerance to a lethal heat challenge at 45°C for 5 min. When the protein synthesis inhibitor, cycloheximide, was added prior to the heat shock, no statistically significant thermotolerance was acquired. To confirm the correlation between the synthesis of hsps and the acquisition of thermotolerance, protein extracts of cells that had been heat shocked in the presence or absence of cycloheximide were electrophoretically analyzed. Addition of the same concentration of cycloheximide that prevented the acquisition of thermotolerance also inhibited the synthesis of any hsps.  相似文献   

13.
Ethanol is one of the products of the metabolism of glucose by Candida albicans. The amount produced is directly related to the concentration of glucose in the medium. The fungus utilizes ethanol as a sole source of carbon but is relatively intolerant of ethanol in its environment. Ethanol induces germ tube formation by blastoconidia of C. albicans. Germination was not seen under fermentation conditions even though the amount of ethanol produced was in the range form stress proteins that are similar to heat shock proteins. The possibility that stress proteins may regulate germ tube formation by C. albicans is discussed.  相似文献   

14.
Summary The heat shock (HS) response in callus cultures of the ornamental plant Gerbera jamesonii H. Bolus var. hybrida was analyzed. A HS at 35° C or 40° C for 4 h induced (a) the synthesis of several heat shock proteins (HSPs), especially in the small molecular weight range and some spots corresponding to HSP70 components, and (b) an increase in the steady state levels of some specific mRNAs. At the nonstressing temperature (26° C), a sustainable level of translation for HSP70 was indeed carried out, as confirmed by immunological analysis with a monoclonal antibody against cotton HSP70. The steady state levels of mRNAs measured before and after a HS by Northern hybridization showed an increase with the heterologous probes HSP17.4, HSP17.6, and HSP21, whereas the probes HSC70 and HSP70 did not show any difference between the levels of control and HS-mRNAs. A pretreatment at 35° C, which induced a set of HSPs in the callus cultures, decreased the cell damage upon exposure to a temperature of 45° C as determined either with a regrowth test or by the tetrazolium reduction assay. Typically, as with the whole plants, callus of Gerbera jamesonii possessed the ability to respond to HS both by inducing HSPs and by developing an acquired thermotolerance.  相似文献   

15.
16.
J Oberdoerster  R A Rabin 《Life sciences》1999,64(23):PL 267-PL 272
The present study was undertaken to determine whether the neurotoxic effects of ethanol vary between undifferentiated and differentiated neurons. For this study, untreated rat pheochromocytoma (PC12) cells and PC12 cells treated for 8-10 days with nerve growth factor (NGF) were used as models of undifferentiated and differentiated neurons, respectively. Treatment of differentiated PC12 cells with 150 mM ethanol resulted in a loss of cells whereas a similar treatment of undifferentiated cells had no effect. In contrast, 50 mM ethanol enhanced apoptosis initiated by serum withdrawal in undifferentiated cells while a similar response in the differentiated cells required 150 mM ethanol. This study demonstrates that undifferentiated and differentiated neuronal cells differ in their sensitivity to the neurotoxic actions of ethanol.  相似文献   

17.
Mouse C3H 10T1/2 cells exhibited a two- to threefold increase in the concentration of free Ca2+ during heating at 45 degrees C. The increase was maximal for a heat dose which was still in the shoulder region of the survival curve. The increase was fully reversible in heat-sterilized cells. By changing the concentration of extracellular Ca2+, it was possible to modulate the concentration of intracellular free Ca2+ in heated cells. Lowering the extracellular concentration to 0.03 mM reduced the baseline concentration of intracellular free Ca2+, and prevented it from increasing in heated cells to a level exceeding that of nonheated cells incubated in medium containing 2.0 or 5.0 mM Ca2+. Raising the concentration of extracellular Ca2+ to 15.0 mM raised the baseline, and resulted in a heat-induced increase in free Ca2+ which was twofold higher than that of cells heated in medium containing 2.0 or 5.0 mM Ca2+. An elevated concentration of intracellular free Ca2+ during and after heating did not potentiate thermal killing, nor did a reduced concentration during and after heating mitigate killing. Furthermore, the data argue against a heat-induced increase in free Ca2+ to some threshold level, which potentiates cell killing by some other parameter. In addition, cells heat-shocked in either 0.03 or 5.0 mM extracellular Ca2+, and then incubated in the same concentration for 12 h at 37 degrees C, developed quantitatively similar amounts of tolerance to a second heating. The data suggest that the concentration of intracellular free Ca2+ does not play a critical role in thermal killing or the induction and development of thermotolerance.  相似文献   

18.
Dimethylsulfoxide (DMSO) is known to protect isolated enzymes during freezing while destabilizing proteins at high temperatures. This apparent paradox is the subject of a review by Arakawa et al. ((1990) Cryobiology 27, 401-415), who present evidence for a temperature-dependent, hydrophobic interaction between DMSO and non-polar moieties of proteins. The present study investigates the interaction of DMSO with phospholipid bilayers. Phospholipid vesicles containing carboxyfluorescein were exposed to several concentrations of DMSO at various temperatures. Leakage rates increased with DMSO concentration and temperature. This effect was not reduced in the presence of solutes that have been shown to neutralize DMSO toxicity in tissues. The increased leakage rates correlate well with the increased partitioning of DMSO from water to octanol at higher temperatures. Additionally, reductions in the CH2 vibrations of the bilayer are also shown to depend on DMSO concentration and temperature. A similar reduction in CH2 vibrations was observed in solutions of octanol and DMSO, suggesting that this effect is not mediated through an interaction with water. Furthermore, investigation of sulfoxide vibrations indicate that DMSO is not hydrogen bonded to the alcohol moiety of octanol, and therefore the interaction between DMSO and octanol is most likely due to a hydrophobic association. These results are consistent with a destabilization of phospholipid membranes at higher temperatures due to a hydrophobic association between DMSO and the bilayer.  相似文献   

19.
20.
Optical control of neuronal activity has a number of advantages over electrical methods and can be conveniently applied to intact individual neurons in vivo. In this study, we demonstrated an experimental approach in which a focused continuous near-infrared (CNI) laser beam was used to activate single rat hippocampal neurons by transiently elevating the local temperature. Reversible changes in the amplitude and kinetics of neuronal voltage-gated Na and K channel currents were recorded following irradiation with a single-mode 980 nm CNI-laser. Using single-channel recordings under controlled temperatures as a means of calibration, it was estimated that temperature at the neuron rose by 14°C in 500 ms. Computer simulation confirmed that small temperature changes of about 5°C were sufficient to produce significant changes in neuronal excitability. The method should be broadly applicable to studies of neuronal activity under physiological conditions, in particular studies of temperature-sensing neurons expressing thermoTRP channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号