首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The gene encoding Plasmodium vivax circumsporozoite protein (PvCSP) exhibits polymorphism in many geographical isolates. The present study was designed to investigate polymorphism in PvCSP gene of P. vivax isolates in Korea. Thirty isolates, obtained from indigenous cases in Yonchon-gun, Kyonggi-do in 1997, were subjected for sequencing and RFLP analysis of the repeat and post-repeat regions of PvCSP gene and two genotypes (SK-A and SK-B) were identified. The genotype of 19 isolates was SK-A and that of 11 isolates was SK-B. Although the number of 12-base repeats present in SK-A was three while two were found in a Chinese strain CH-5, the repeat sequence of SK-A was identical to that of CH-5 except for one base substitution. Compared with known data there was no identical isolates with SK-B, but the sequence of SK-B was similar to that of a North Korean (NK) isolate. These results indicate that two genotypes of PvCSP coexist in the present epidemic area of Korea and the present parasite may originate from East Asia. RFLP would be useful to classify genotypes of P. vivax population instead of gene sequencing.  相似文献   

2.
It was generally believed that Toxoplasma gondii had a clonal population structure with three predominant lineages, namely types I, II and III. This was largely based on genotyping of more than 100 T. gondii isolates originating from a variety of human and animal sources in North America and Europe. Recent genotyping studies on T. gondii strains from wild animals or human patients from different geographical regions revealed the high frequency of non-archetypal genotypes, suggesting the overall diversity of the T. gondii population might be much higher than we thought. However, as most genotyping studies had relied on a few biallelic markers, the resolution and discriminative power of identifying parasite isolates were quite low. To date, there is no commonly used set of markers to genotype T. gondii strains and it is not feasible to compare results from different laboratories. Here, we developed nine PCR-restriction fragment length polymorphism markers with each of them capable of distinguishing the three archetypal T. gondii alleles in one restriction-enzyme reaction by agarose gel electrophoresis. Genotyping 46 T. gondii isolates from different sources using these markers showed that they could readily distinguish the archetypal from atypical types and reveal the genetic diversity of the parasites. In addition, mixed strains in samples could be easily detected by these markers. Use of these markers will facilitate the identification of T. gondii isolates in epidemiological and population genetic studies.  相似文献   

3.
The plasmepsins are the aspartic proteases of malaria parasites. Treatment of aspartic protease inhibitor inhibits hemoglobin hydrolysis and blocks the parasite development in vitro suggesting that these proteases might be exploited their potentials as antimalarial drug targets. In this study, we determined the genetic variations of the aspartic proteases of Plasmodium vivax (PvPMs) of wild isolates. Two plasmepsins (PvPM4 and PvPM5) were cloned and sequenced from 20 P. vivax Korean isolates and two imported isolates. The sequences of the enzymes were highly conserved except a small number of amino acid substitutions did not modify key residues for the function or the structure of the enzymes. The high sequence conservations between the plasmepsins from the isolates support the notion that the enzymes could be reliable targets for new antimalarial chemotherapeutics.  相似文献   

4.
Molecular methods elucidate evolutionary and ecological processes in parasites, where interaction between hosts and parasites enlighten the evolution of parasite lifestyles and host defenses. Population genetics of Plasmodium vivax parasites accurately describe transmission dynamics of the parasites and evaluation of malaria control measures. As a first generation vaccine candidate against malaria, the Circumsporozoite Protein (CSP) has demonstrated significant potential in P. falciparum. Extensive polymorphism hinders the development of a potent malaria vaccine. Hence, the genetic diversity of Pvcsp was investigated for the first time in 60 Sri Lankan clinical isolates by obtaining the nucleotide sequence of the central repeat (CR) domain and examining the polymorphism of the peptide repeat motifs (PRMs), the genetic diversity indices and phylogenetic relationships. PCR amplicons determined size polymorphism of 610, 700 and 710 bp in Pvcsp of Sri Lanka where all amino acid sequences obtained were of the VK210 variant, consisting variable repeats of 4 different PRMs. The two most abundant PRMs of the CR domain, GDRADGQPA and GDRAAGQPA consisted ~ 2-4 repeats, while GNRAAGQPA was unique to the island. Though, different nucleotide sequences termed repeat allotypes (RATs) were observed for each PRM, these were synonymous contributing to a less polymorphic CR domain. The genetic diversity of Pvcsp in Sri Lanka was due to the number of repetitive peptide repeat motifs, point mutations, and intragenic recombination. The 19 amino acid haplotypes defined were exclusive to Sri Lanka, whereas the 194 Pvcsp sequences of global isolates generated 57 more distinct a.a. haplotypes of the VK210 variant. Strikingly, the CR domain of both VK210 and VK247 variants was under purifying selection interpreting the scarcity of CSP non-synonymous polymorphisms. Insights to the distribution of RATs in the CR region with geographic clustering of the P. vivax VK210 variant were revealed. The cladogram reiterated this unique geographic clustering of local (VK210) and global isolates (VK210 and VK247), which was further validated by the elevated fixation index values of the VK210 variant.  相似文献   

5.
The effects of Pleistocene environmental fluctuations on the distribution and diversity of organisms in Southeast Asia are much less well known than in Europe and North America. In these regions, the combination of palaeoenvironmental reconstruction and inferences about population history from genetic data has been very powerful. In Southeast Asia, mosquitoes are good candidates for the genetic approach, with the added benefit that understanding the relative contributions of historical and current processes to population structure can inform management of vector species. Genetic variation among populations of Anopheles minimus was examined using 144 mtDNA COII sequences from 23 sites in China, Thailand and Vietnam. Haplotype diversity was high, with two distinct lineages that have a sequence divergence of over 2% and exhibit different geographical distributions. We compare alternative hypotheses concerning the origin of this pattern. The observed data deviate from the expectations based on a single-panmictic population with or without growth, or a stable but spatially structured population. However, they can be readily accommodated by a model of past fragmentation into eastern and western refugia, followed by growth and range expansion. This is consistent with the palaeoenvironmental reconstructions currently available for the region.  相似文献   

6.
The history of population size and migration patterns leaves its mark in the genetics of populations. We investigate the genetic structure of the edible frog, Pelophylax esculentus in the Danish archipelago and adjacent countries. This frog is of particular interest because it is a hybrid that, in this area, forms all-hybrid populations of diploid (LR) and triploid (LLR and LRR) genomotypes with no (or very few) adults of the parental species (LL and RR). This study is the first to cover the entire geographic range of Danish, Swedish and German all-hybrid populations, documenting their extent and providing a broad picture of their diversity of neutral genetic markers and genomotype proportions. With 18 microsatellite markers, we found that genetic diversity declines northwards in agreement with the glacial refuge and central-marginal hypotheses; however, populations on small and medium-sized islands are no less diverse than those on large islands and continental peninsulas. Isolation by distance exists across the archipelago with limited influence of fragmentation by brackish seawater. The extremely low genetic diversity in all-hybrid populations, compared with adjacent populations, may be responsible for the maintenance of their special breeding system. We also show large variation among ponds in proportions of LLR, LR and LRR genomotypes, but little geographic pattern in their distribution. Instead, we found relationships between the genomotype proportions and some of 15 habitat parameters monitored. Body size differences among LLR, LR and LRR further suggest ecological differences.  相似文献   

7.
We have examined the global population genetic structure of Haemonchus contortus. The genetic variability was studied using both amplified fragment length polymorphism (AFLP) and nad4 sequences of the mitochondrial genome. To examine the performance and information content of the two different marker systems, comparative assessment of population genetic diversity was undertaken in 19 isolates of H. contortus, a parasitic nematode of small ruminants. A total of 150 individual adult worms representing 14 countries from all inhabited continents were analysed. Altogether 1,429 informative AFLP markers were generated using four different primer combinations. Also, the genetic variation was high, which agrees with results from previous AFLP studies of nematode parasites of livestock. The genetic structure was high, indicating limited gene flow between the different isolates and populations from each continent mostly formed monophyletic groups in the phylogenetic analysis. However, for isolates representing Australia, Greece and one laboratory strain that originated from South Africa (WRS), there was no clear genetic relationship between the isolates and the distance between their geographical origins. Basically the same pattern was observed for the mitochondrial marker, although the phylogenetic analysis was less resolved than for AFLP. In contrast with previous findings on the population genetic structure of H. contortus, the calculation of population structure gave high values (Nst=0.59). The strong structure was present also for the four Swedish isolates (Nst=0.16) representing a small geographical area.  相似文献   

8.
A total of 1673 Mycosphaerella graminicola strains were assayed for DNA fingerprints and restriction fragment length polymorphism (RFLP) markers in the nuclear and mitochondrial genomes. The isolates were collected from 17 wheat fields located in 11 countries on five continents over a six year period (1989-1995). Our results indicate that genetic diversity in the nuclear genome of this fungus was high for all but three of the field populations surveyed and that populations sampled from different continents had similar frequencies for the most common RFLP alleles. Hierarchical analysis revealed that more than 90% of global gene diversity was distributed within a wheat field, while approximately 5% of gene diversity was distributed among fields within regions and approximately 3% was distributed among regions on different continents. These findings suggest that gene flow has occurred on a global scale. On average, each leaf was colonized by a different nuclear genotype. In contrast, only seven mtDNA haplotypes were detected among the 1673 isolates and the two most common mtDNA haplotypes represented approximately 93% of the world population, consistent with a selective sweep. Analysis of multilocus associations indicated that all field populations were in gametic equilibrium, suggesting that sexual recombination is a regular occurrence globally.  相似文献   

9.
Molecular markers have been used only rarely to characterize the population genetic structure of nematodes. Published studies have suggested that different taxa may show distinct genetic architectures. Isoenzyme and RAPD markers have been used to investigate geographic variation of Ascaris suum at the level of infrapopulations (nematodes within individual hosts), within localities, and among geographic regions. Independent estimates of genetic differentiation among population samples based on isoenzyme and RAPD data showed similar patterns and substantial correlation. Heterozygote deficiencies within infrapopulations and large values for inbreeding coefficients among infrapopulations suggested that the composition of these populations was not consistent with a model of random recruitment from a large panmictic pool of life-cycle stages. Both isoenzyme and RAPD markers revealed moderate levels of genetic differentiation among samples representing infrapopulations and localities. Of total gene diversity, 9.4% (isoenzyme) and 9.2% (RAPD) was partitioned among infrapopulations. Geographic localities accounted for 7.8% (isoenzyme) and 6.2% (RAPD) of total diversity. Only infrapopulations from the same farm had low levels of differentiation.  相似文献   

10.
Twelve 924 bp cytochrome c oxidase subunit 1 (cox1) mitochondrial DNA sequences from Taenia asiatica isolates from Thailand were aligned and compared with multiple sequence isolates from Thailand and 6 other countries from the GenBank database. The genetic divergence of T. asiatica was also compared with Taenia saginata database sequences from 6 different countries in Asia, including Thailand, and 3 countries from other continents. The results showed that there were minor genetic variations within T. asiatica species, while high intraspecies variation was found in T. saginata. There were only 2 haplotypes and 1 polymorphic site found in T. asiatica, but 8 haplotypes and 9 polymorphic sites in T. saginata. Haplotype diversity was very low, 0.067, in T. asiatica and high, 0.700, in T. saginata. The very low genetic diversity suggested that T. asiatica may be at a risk due to the loss of potential adaptive alleles, resulting in reduced viability and decreased responses to environmental changes, which may endanger the species.  相似文献   

11.
Plasmodium vivax malaria re-emerged in South Korea in 1993, and epidemics continue since then. We examined genetic variation in the region encompassing the apical membrane antigen-1 (PvAMA-1) of the parasites by DNA sequencing of the 22 re-emerging P. vivax isolates. The genotype of the PvAMA-1, which was based on sequence data previously reported for the polymorphic regions, showed that two haplotypes were present at one polymorphic site. Compared with reported data, the two types, SKOR type I and type II, were similar to Chinese CH-10A and CH-05A isolates, respectively. Thus, the present study showed that two genotypes of AMA-1 genes coexist in the re-emerging Korean P. vivax.  相似文献   

12.
The objectives of the present study were to (1) determine the susceptibility of Anopheles sinensis to Korean isolates of Plasmodium vivax, (2) establish a method to collect large quantities of P. vivax sporozoites for use as antigen in seroepidemiological studies, and (3) investigate the characteristics of Korean isolates of P. vivax sporozoites. Females of Anopheles sinensis were collected at non-epidemic area, Seokwha-ri, Cheongwon-gun and Chungcheongbuk-do using tent-trap methods coupled with dry ice. The females were artificially infected with gametocytes of P. vivax using blood obtained from P. vivax malaria patients. Individual mosquitoes were infected using either a parafilm-covered glass feeding apparatus or were allowed to feed on naturally infected volunteers. Mosquitoes were sacrificed between 16 and 18 days post-feeding and an enzyme-linked immunosorbent assay (ELISA) was used to detect sporozoites. Four (33.4%) of 12 mosquitoes, which were fed on naturally infected volunteers directly, were positive for sporozoites. In cases, the mosquitoes allowed to feed on whole blood which were extract from three different patients with heparin treated vacuutainers using a parafilm-covered glass apparatus. Two of 55 (3.6%) were positive which blood sample was maintained at room temperature for 8 hours, 1 of 68 (1.5%) was positive which blood was maintained at 4 degrees C for 24 hours and 1 of 47 (2.3%) was positive at 4 degrees C for 48 hours. The mean number of sporozoites was estimated about 818 (n = 8; range of 648-1,056) based on optical density values of ELISA.  相似文献   

13.
The use of sulfadoxine and pyrimethamine (SP) for treatment of vivax malaria is uncommon in most malarious areas, but Plasmodium vivax isolates are exposed to SP because of mixed infections with other Plasmodium species. As P. vivax is the most prevalent species of human malaria parasites in Iran, monitoring of resistance of the parasite against the drug is necessary. In the present study, 50 blood samples of symptomatic patients were collected from 4 separated geographical regions of south-east Iran. Point mutations at residues 57, 58, 61, and 117 were detected by the PCR-RFLP method. Polymorphism at positions 58R, 117N, and 117T of P. vivax dihydrofolate reductase (Pvdhfr) gene has been found in 12%, 34%, and 2% of isolates, respectively. Mutation at residues F57 and T61 was not detected. Five distinct haplotypes of the Pvdhfr gene were demonstrated. The 2 most prevalent haplotypes were F57S58T61S117 (62%) and F57S58T61N117 (24%). Haplotypes with 3 and 4 point mutations were not found. The present study suggested that P. vivax in Iran is under the pressure of SP and the sensitivity level of the parasite to SP is diminishing and this fact must be considered in development of malaria control programs.  相似文献   

14.

Background

Fusarium oxysporum f. sp. ciceris (Foc), the causal agent of Fusarium wilt of chickpea is highly variable and frequent recurrence of virulent forms have affected chickpea production and exhausted valuable genetic resources. The severity and yield losses of Fusarium wilt differ from place to place owing to existence of physiological races among isolates. Diversity study of fungal population associated with a disease plays a major role in understanding and devising better disease control strategies. The advantages of using molecular markers to understand the distribution of genetic diversity in Foc populations is well understood. The recent development of Diversity Arrays Technology (DArT) offers new possibilities to study the diversity in pathogen population. In this study, we developed DArT markers for Foc population, analysed the genetic diversity existing within and among Foc isolates, compared the genotypic and phenotypic diversity and infer the race scenario of Foc in India.

Results

We report the successful development of DArT markers for Foc and their utility in genotyping of Foc collections representing five chickpea growing agro-ecological zones of India. The DArT arrays revealed a total 1,813 polymorphic markers with an average genotyping call rate of 91.16% and a scoring reproducibility of 100%. Cluster analysis, principal coordinate analysis and population structure indicated that the different isolates of Foc were partially classified based on geographical source. Diversity in Foc population was compared with the phenotypic variability and it was found that DArT markers were able to group the isolates consistent with its virulence group. A number of race-specific unique and rare alleles were also detected.

Conclusion

The present study generated significant information in terms of pathogenic and genetic diversity of Foc which could be used further for development and deployment of region-specific resistant cultivars of chickpea. The DArT markers were proved to be a powerful diagnostic tool to study the genotypic diversity in Foc. The high number of DArT markers allowed a greater resolution of genetic differences among isolates and enabled us to examine the extent of diversity in the Foc population present in India, as well as provided support to know the changing race scenario in Foc population.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-454) contains supplementary material, which is available to authorized users.  相似文献   

15.
The genetic diversity of 47 Histoplasma capsulatum isolates from infected bats captured in Mexico, Brazil, and Argentina was studied, using sequence polymorphism of a 240-nucleotides (nt) fragment, which includes the (GA)(n) length microsatellite and its flanking regions within the HSP60 gene. Three human clinical strains were used as geographic references. Based on phylogenetic analyses of 240-nt fragments achieved, the relationships among H. capsulatum isolates were resolved using neighbour-joining and maximum parsimony methods. The tree topologies obtained by both methods were identical and highlighted two major clusters of isolates. Cluster I had three sub-clusters (Ia, Ib, and Ic), all of which contained Mexican H. capsulatum samples, while cluster II consisted of samples from Brazil and Argentina. Sub-cluster Ia included only fungal isolates from the migratory bat Tadarida brasiliensis. An average DNA mutation rate of 2.39 × 10(-9) substitutions per site per year was estimated for the 240-nt fragment for all H. capsulatum isolates. Nucleotide diversity analysis of the (GA)(n) and flanking regions from fungal isolates of each cluster and sub-cluster underscored the high similarity of cluster II (Brazil and Argentina), sub-clusters Ib, and Ic (Mexico). According to the genetic distances among isolates, a network of the 240-nt fragment was graphically represented by (GA)(n) length haplotype. This network showed an association between genetic variation and both the geographic distribution and the ecotype dispersion of H. capsulatum, which are related to the migratory behaviour of the infected bats studied.  相似文献   

16.
Most antigenically novel and evolutionarily successful strains of seasonal influenza A (H3N2) originate in East, South and Southeast Asia. To understand this pattern, we simulated the ecological and evolutionary dynamics of influenza in a host metapopulation representing the temperate north, tropics and temperate south. Although seasonality and air traffic are frequently used to explain global migratory patterns of influenza, we find that other factors may have a comparable or greater impact. Notably, a region''s basic reproductive number (R0) strongly affects the antigenic evolution of its viral population and the probability that its strains will spread and fix globally: a 17–28% higher R0 in one region can explain the observed patterns. Seasonality, in contrast, increases the probability that a tropical (less seasonal) population will export evolutionarily successful strains but alone does not predict that these strains will be antigenically advanced. The relative sizes of different host populations, their birth and death rates, and the region in which H3N2 first appears affect influenza''s phylogeography in different but relatively minor ways. These results suggest general principles that dictate the spatial dynamics of antigenically evolving pathogens and offer predictions for how changes in human ecology might affect influenza evolution.  相似文献   

17.
Malaria parasites exhibit sequence diversity for a number of stage specific antigens. Several studies have proved that apical membrane antigen-1 (AMA-1) is an effective target for eliciting a protective immune response in humans and other experimental animals. We have investigated the sequence variation in Plasmodium vivax AMA-1 (Pv AMA-1) from different Indian isolates. This is the first study of its kind for the nearly full length Pv AMA-1 from India. Our analysis reveals greater degree of genetic diversity in Pv AMA-1 than reported so far and identifies five novel haplotypes. This is significant to establish the antigenic repertoire of isolates in a malaria endemic country like India.  相似文献   

18.
The present study determined and compared the genetic diversity of Plasmodium falciparum strains infecting children living in 2 areas from Gabon with different malaria endemicity. Blood samples were collected from febrile children from 2008 to 2009 in 2 health centres from rural (Oyem) and urban (Owendo) areas. Genetic diversity was determined in P. falciparum isolates by analyzing the merozoite surface protein-1 (msp1) gene polymorphism using nested-PCR. Overall, 168 children with mild falciparum malaria were included. K1, Ro33, and Mad20 alleles were found in 110 (65.5%), 94 (55.9%), and 35 (20.8%) isolates, respectively, without difference according to the site (P>0.05). Allelic families’ frequencies were comparable between children less than 5 years old from the 2 sites; while among the older children the proportions of Ro33 and Mad20 alleles were 1.7 to 2.0 fold higher at Oyem. Thirty-three different alleles were detected, 16 (48.5%) were common to both sites, and 10 out of the 17 specific alleles were found at Oyem. Furthermore, multiple infection carriers were frequent at Oyem (57.7% vs 42.2% at Owendo; P=0.04) where the complexity of infection was of 1.88 (±0.95) higher compared to that found at Owendo (1.55±0.75). Extended genetic diversity of P. falciparum strains infecting Gabonese symptomatic children and high multiplicity of infections were observed in rural area. Alleles common to the 2 sites were frequent; the site-specific alleles predominated in the rural area. Such distribution of the alleles should be taken into accounts when designing MSP1 or MSP2 malaria vaccine.  相似文献   

19.
Antagonistic coevolution between hosts and parasites has been proposed as a mechanism maintaining genetic diversity in both host and parasite populations. In particular, the high level of genetic diversity usually observed at the major histocompatibility complex (MHC) is generally thought to be maintained by parasite-driven selection. Among the possible ways through which parasites can maintain MHC diversity, diversifying selection has received relatively less attention. This hypothesis is based on the idea that parasites exert spatially variable selection pressures because of heterogeneity in parasite genetic structure, abundance or virulence. Variable selection pressures should select for different host allelic lineages resulting in population-specific associations between MHC alleles and risk of infection. In this study, we took advantage of a large survey of avian malaria in 13 populations of the house sparrow (Passer domesticus) to test this hypothesis. We found that (i) several MHC alleles were either associated with increased or decreased risk to be infected with Plasmodium relictum, (ii) the effects were population specific, and (iii) some alleles had antagonistic effects across populations. Overall, these results support the hypothesis that diversifying selection in space can maintain MHC variation and suggest a pattern of local adaptation where MHC alleles are selected at the local host population level.  相似文献   

20.
Background and Aims Date palms (Phoenix dactylifera, Arecaceae) are of great economic and ecological value to the oasis agriculture of arid and semi-arid areas. However, despite the availability of a large date palm germplasm spreading from the Atlantic shores to Southern Asia, improvement of the species is being hampered by a lack of information on global genetic diversity and population structure. In order to contribute to the varietal improvement of date palms and to provide new insights on the influence of geographic origins and human activity on the genetic structure of the date palm, this study analysed the diversity of the species.Methods Genetic diversity levels and population genetic structure were investigated through the genotyping of a collection of 295 date palm accessions ranging from Mauritania to Pakistan using a set of 18 simple sequence repeat (SSR) markers and a plastid minisatellite.Key Results Using a Bayesian clustering approach, the date palm genotypes can be structured into two different gene pools: the first, termed the Eastern pool, consists of accessions from Asia and Djibouti, whilst the second, termed the Western pool, consists of accessions from Africa. These results confirm the existence of two ancient gene pools that have contributed to the current date palm diversity. The presence of admixed genotypes is also noted, which points at gene flows between eastern and western origins, mostly from east to west, following a human-mediated diffusion of the species.Conclusions This study assesses the distribution and level of genetic diversity of accessible date palm resources, provides new insights on the geographic origins and genetic history of the cultivated component of this species, and confirms the existence of at least two domestication origins. Furthermore, the strong genetic structure clearly established here is a prerequisite for any breeding programme exploiting the effective polymorphism related to each gene pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号