首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:探讨极低频正弦磁场对痛阈的影响以及脑内氨基酸神经递质在磁场镇痛中的作用。方法:20只SD大鼠暴露于55.6Hz、8.1mT正弦磁场中并利用辐射热甩尾法检测痛阈,同时用高效液相色谱检测暴露第11天和第14天大脑皮层和延髓谷氨酸和γ-氨基丁酸(GABA)含量。结果:与对照组相比大鼠磁场暴露第10天和第11天痛阈明显提高(P0.05)。第11天大脑皮层和延髓的γ-氨基丁酸水平有明显改变(P0.05)。结论:极低频正弦磁场有镇痛作用,调节γ-氨基丁酸可能是其作用机制之一。  相似文献   

2.
1. In the neurogenic heart of the isopod crustacean Porcellio dilatatus, external K+ removal depolarized the membrane (K0 effect) whereas subsequent restoration of K+ resulted in a rapid hyperpolarization (K1 effect). 2. The amplitude of the K1 effect depended on the duration of the prior K+ deprivation and on the subsequent K+ concentration. 3. The membrane resistance slightly increased during the K0 effect; during the K1 effect, it only returned to its control value. 4. Ouabain, cooling and replacement of external Na+ by Li+ also produced depolarization. 5. The K1 effect was suppressed by ouabain and markedly depressed by lowering the temperature to 4-6 degrees C. It was abolished if Li+ replaced Na+ during the prior privation of K+; moreover Li+ was unable to act as a substitute for external K+ in generating the K1 effect if used at equivalent concentration, but enhanced the effect at high concentration. 6. The findings are consistent with the presence of an electrogenic sodium pump in the myocardium of Porcellio contributing to the resting membrane potential. 7. Changes in the spontaneous rhythm observed during K0 and K1 are further suggestive of the presence of an electrogenic Na+ pump in the pacemaker neurons of the cardiac ganglion. Another explanation is also proposed. 8. The magnitude of the spontaneous contractions of the heart was increased during the K0 effect and markedly decreased during the K1 effect. An indirect effect of the changes in internal Na+ concentration on the contractile processes is suggested.  相似文献   

3.
The effect of pH and of ATP on the Na : K selectivity of the (Na+ + K+)-ATPase has been tested under equilibrium conditions. The Na+ : K+-induced change in intrinsic tryptophan fluorescence and in fluorescence of eosin maleimide bound to the system has been used as a tool. 1 mol of eosin maleimide per mol of enzyme gives no loss in either ATPase or phosphatase activity and the fluorescence in the presence of Na+ is about 30% higher than in the presence of K+. Choline, protonated Tris, protonated histidine and Mg2+ have an 'Na+' effect on the extrinsic fluorescence, while Rb+, Cs+ and NH4+ have a 'K+' effect. Choline and protonated Tris have an Na+ effect on intrinsic fluorescence. A close correlation between the effect of Na+ compared to K+ on the fluorescence change and on Na+ activation of hydrolysis indicates that the observed changes in fluorescence are due to an effect of Na+ and of K+ on the internal sites of the system. The equilibrium between the two conformations, which are reflected by the difference in fluorescence with Na+ and K+, respectively, is highly influenced by the concentration of protons. At a given Na+ : K+ ratio, an increase in the proton concentration shifts the equilibrium towards the 'K+' fluorescence form while a decrease shifts the equilibrium towards the 'Na+' fluorescence form, i.e., protons increase the apparent affinity for K+ and vice versa, K+ increases pK values of importance for the Na+ : K+ selectivity. Conversely, a decrease in protons increases the apparent affinity for Na+ and vice versa, Na+ decreases the pK. ATP decreases the apparent pK for the protonation-deprotonation, i.e., ATP facilitates the deprotonation which accompanies Na+ binding. The results suggest two effects of ATP for the hydrolysis in the presence of Na+ and K+ : (i) at low ATP concentrations (K0.5 < 10 microM) on the K+-Na+ exchange on the internal sites and (ii) at higher, substrate, concentrations on the activation by K+ on the external sites.  相似文献   

4.
An increase in pH decreases the Na+ concentration (Na+ +K+ = 150 mM) necessary for half-maximum activation of the (Na+ +K+)-ATPase at non-saturating concentrations of ATP just as an increase in the concentration of ATP at a given pH. It also decreases the concentration of Na+ necessary for transformation from the K+-form to the Na+-form at equilibrium conditions (Na+ +K+ = 150 mM). An increase in pH increases the rate of the transformation from the K+-form to the Na+-form of the system and decreases the rate of the reverse reaction. The pH effect on the conformation suggests that the K+-form is a protonated form and the Na+-form a deprotonated one. The similarity between the effect of an increase in pH with non-saturating concentrations of ATP and that of an increase in ATP at a given pH suggests that ATP exerts its effect on the transformation from the K+ - to the Na+-form by a decrease in pK values of the system, i.e., by releasing protons, a Bohr effect. Enzyme modified by reaction with pyridoxal 5-phosphate terminated by NaBH4 behaves at a given pH as if it were non-modified enzyme but at a higher pH. The 'pH effect' is seen after modification by pyridoxal 5-phosphate in the presence of ATP, of Na+ without and with ATP, of K+ with ATP but not in the presence of K+ alone. The modification has also a 'pH effect' on the rate of the transformation from the K+ -form to the Na+ -form and on the reverse reaction. There are at least two different pyridoxal 5-phosphate-reactive groups (amino groups), one which can be protected by ATP and which is of importance for activity and another which is not protected by ATP and which is of importance for the pH effect on the conformation. The effect of a protonation-deprotonation of amino groups on the conformation is explained by an involvement of the amino groups in salt bridge formation in between and inside the polypeptide chains, a hemoglobin-like situation. The protonated K+ -form is then a tense T-structure with a high K+, low Na+ affinity and the deprotonated Na+ -form a relaxed, R-structure with high Na+, low K+ affinity. ATP facilitates deprotonation by decreasing pK values. Oligomycin has 'pH effect' on the K0.5 for Na+ under equilibrium and steady-state conditions, but oligomycin has no effect on the rate of the transformation from the K+ -form to the Na+ -form, but gives a pronounced decrease of the rate of the reverse reaction, indicating that oligomycin does not react with the K+ -form but with the Na+ -form of the system and prevents the protonation, the E1 to E2 transformation.  相似文献   

5.
1. Efflux of K+ was measured in pre-loaded (86Rb+) chicken enterocytes incubated in buffers with external K+ concentration ([K+]0) between 1 and 40 mM. 2. A decrease in [K+]0 from 6 to 1 mM reduced the rate constant of K+ efflux, whereas it was stimulated by increasing [K+]0 from 6 to 40 mM. 3. The inhibitory effect of low [K+]0 on K+ efflux was: (i) higher than that expected from a change in the electrical driving force, suggesting that membrane K+ permeability has been decreased, and (ii) attenuated by A23187 and Na(+)-free buffers. 4. The effect of A23187 on K(+)-induced K+ efflux was abolished by apamin and that of Na(+)-free buffers by apamin, quinine or verapamil, which suggests that the effect of low K+ on K+ efflux seems to be due to decreased intracellular Ca2+ concentration. 5. The stimulatory effect of 40 mM K0+ on K+ exit can be accounted for by an increase in the electrical driving force. 6. The efflux of K+ at 40 mM K0 appears to occur through Ca2(+)-activated K+ channels (KCa) since it was prevented by 500 microM quinine and unaffected by bumetanide or 3,4-diaminopyridine. 7. In addition, the current results show that an increase in external K+ concentration reduced the ability of quinine to inhibit KCa channels, and even abolished that of Ba2+ and apamin.  相似文献   

6.
A significant amount of ammonium (NH4+) is absorbed by the colon. The nature of NH4+ effects on transport and NH4+ transport itself in colonic epithelium is poorly understood. The goal of this study was to elucidate the effects of NH4+ on cAMP-stimulated Cl- secretion in the colonic cell line T84. In HEPES-buffered solutions, application of basolateral NH4+ resulted in a reduced level of Cl- secretory current. The effect of NH4+ appears to occur by at least three mechanisms: 1) basolateral membrane depolarization, 2) a competitive effect with K+, and 3) a long-term (>20 min) increase in transepithelial resistance (TER). The competitive effect with K+ exhibits anomalous mole fraction behavior. Transepithelial current relative to that in 10 mM basolateral K+ was inhibited 15% by 10 mM NH4+ alone and by 30% with a mixture of 2 mM K+ and 8 mM NH4+. A mole fraction mix of 2 mM K+:8 mM NH4+ produced a greater inhibition of basolateral membrane K+ current than pure K+ or NH4+ alone. Similar anomalous behavior was also observed for inhibition of bumetanide-sensitive 36Cl- uptake, e.g., Na+-K+-2Cl- -cotransporter (NKCC-1). No anomalous effect was observed on Na+-K+-ATPase current. Both NKCC-1 and Na+-K+-ATPase activity were elevated in 10 mM NH4+ with respect to 10 mM K+. The effect on TER did not exhibit anomalous mole fraction behavior. The overall effect of basolateral NH4+ on cAMP-stimulated transport is dependent on the [K+]o /[NH4+]o ratio at the basolateral membrane, where o is outside of the cell.  相似文献   

7.
It is well established that endothelin-1 (ET-1) plays a role in differentiation and proliferation in a variety of cells such as fibroblasts and human melanoma cells via a receptor-mediated mechanism. However, whether ET-1 modulates ion channel activity in these cell types is still unknown. In this report, we recorded the voltage-dependent outward K+ current in cultured B16 melanoma cells using the patch-clamp technique. Biophysical and pharmacological properties of the K+ current, and the effect of ET-1 on the K+ current were investigated. When cells were loaded with a Ca(2+)-chelating agent (EGTA or BAPTA), the K+ current amplitude gradually increased with time after establishment of the whole cell configuration. Replacement of Ca2+ with Co2+ in the extracellular medium caused no significant modulation of the K+ current amplitude. Addition of BaCl2 or quinidine to the extracellular solution reduced the K+ current amplitude, whereas the K+ current was insensitive to tetraethylammonium. ET-1 (10 nM) reversibly decreased the K+ current amplitude and accelerated the decay of the K+ current. The ET-1-induced inhibitory effect displayed no desensitization following repeated ET-1 application. Pretreatment with pertussis toxin (PTX) or perfusion of cells with the protein kinase C (PKC) inhibitor H-7 abolished the inhibitory effect of ET-1 on the K+ current. We conclude that the outward K+ current recorded in murine B-16 melanoma cells represents a Ca(2+)-inactivated K+ current, and that the inhibitory effect of ET-1 on the K+ current may reveal a novel mechanism to control the differentiation and proliferation of melanoma cells.  相似文献   

8.
Freshly prepared human red blood cells incubated with 5 mM ferricyanide, 0.2 mM iodoacetate and 2 mM adenosine in the presence of 5 mM EGTA demonstrate comparable increases in Na+ and K+ permeability (ferricyanide effect). This effect is unrelated to the Ca2+-activated K+ channel (Gardos effect) since influx of Ca2+ from outside the cell is excluded. Also this effect is different from the non-specific Na+ and K+ permeability change elicited by PCMBS. These differences become obvious by using various reagents. For example, A23187 and quinidine exert opposite effects in Gardos and ferricyanide experiments, where A23187 and atebrin react oppositely in the latter and in PCMBS experiments. The ferricyanide effect described here does not involve formation of nonspecific channels. The change in Na+ permeability separately from K+ permeability under certain circumstances suggests a more specific effect.  相似文献   

9.
A Mg2+-induced change of the (Na+ and K+)-stimulated adenosine triphosphatase (Na+,K+)-ATPase) from Electrophorus electricus was investigated by kinetics and fluorescence techniques. Binding of Mg2+ to a low affinity site(s) caused inhibition of (Na+,K+)-ATPase activity, an effect which was antagonized by both Na+ and ATP. Mg2+ also caused inhibition of K+-dependent dephosphorylation of the enzyme without inhibiting either (Na+)-ATPase activity or Na+-dependent phosphorylation. Mg2+ also induced a 5 to 6% enhancement in the fluorescence intensity of enzyme labeled with the fluorescent sulfhydryl reagent, 2-(4-maleimidylanilino)naphthalene-6-sulfonate. As in the case of Mg2+ inhibition of activity, the affinity for Mg2+ as an inducing agent for this effect was significantly reduced by both Na+ and ATP, suggesting that the same change was being monitored in both cases. The Mg2+ effect was reduced by both Na+ and ATP, suggesting that the same change was being monitored in both cases. The Mg2+ effect was reduced in magnitude by ouabain and prevented by oligomycin, specific inhibitors of the enzyme. In addition, K+ (and cations that substitute for K+ in supporting activity) induced a 3 to 4% enhancement in fluorescence intensity in the presence of Na+, Mg2+, and ATP, although the K+ and Mg2+ effects appeared to be different on the basis of their excitation spectra. The K+ effect was inhibited by ouabain and occurred with a rate greater than the rate of turnover of the enzyme, permitting its involvement in the catalytic cycle.  相似文献   

10.
The pH optimum for (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) depends on the combination of monovalent cations, on the ATP concentration and on temperature. ATP decreases the Na+ concentration necessary for half maximum activation, K0.5 for Na+ (Na+ + K+ = 150 mM), and the effect is pH and temperature dependent. At a low ATP concentration a decrease in pH leads to an increase in K0.5 for Na+, while at the high ATP concentration it leads to a decrease. K0.5 for ATP for hydrolysis decreases with an increase in pH. The fractional stimulation by K+ in the presence of Na+ decreases with the ATP concentration, and at a low ATP concentration K+ becomes inhibitory, this being most pronounced at 0 degrees C. The results suggest that (a) ATP at a given pH has two different effects: it increases the Na+ relative to K+ affinity on the internal site (K0.5 for ATP at pH 7.4, 37 degrees C, is less than 10 microM); it increases the molar activity in the presence of Na+ + K+ (K0.5 for ATP at pH 7.4, 37 degrees , is 127 microM), (b) binding of the cations to the external as well as the internal sites leads to pK changes (Bohr effect) which are different for Na+ and for K+, i.e. the selectivity for Na+ relative to K+ depends both on ATP and on the degree of protonation of certain groups on the system, (c) ATP involves an extra dissociable group in the determination of the selectivity of the internal site, and thereby changes the effect of an increase in protonation of the system from a decrease to an increase in selectivity for Na+ relative to K+.  相似文献   

11.
Alves DP  Tatsuo MA  Leite R  Duarte ID 《Life sciences》2004,74(20):2577-2591
In order to investigate to the contribution of K+ channels on the peripheral antinociception induced by diclofenac, we evaluated the effect of several K+ channel blockers, using the rat paw pressure test, in which sensitivity is increased by intraplantar injection (2 microg) of prostaglandin E2. Diclofenac administered locally into the right hindpaw (25, 50, 100 and 200 microg) elicited a dose-dependent antinociceptive effect which was demonstrated to be local, since only higher doses produced an effect when injected in the contralateral paw. This blockade of PGE2 mechanical hyperalgesia induced by diclofenac (100 microg/paw) was antagonized in a dose-dependent manner by intraplantar administration of the sulphonylureas glibenclamide (40, 80 and 160 microg) and tolbutamide (80, 160 and 320 microg), specific blockers of ATP-sensitive K+ channels, and it was observed even when the hyperalgesic agent used was carrageenin, while the antinociceptive action of indomethacin (200 microg/paw), a typical cyclo-oxygenase inhibitor, over carrageenin-induced hyperalgesia was not affected by this treatment. Charybdotoxin (2 microg/paw), a blocker of large conductance Ca2+-activated K+ channels and dequalinium (50 microg/paw), a selective blocker of small conductance Ca2+-activated K+ channels, did not modify the effect of diclofenac. This effect was also unaffected by intraplantar administration of non-specific voltage-dependent K+ channel blockers tetraethylammonium (1700 microg) and 4-aminopyridine (100 microg) or cesium (500 microg), a non-specific K+ channel blocker. The peripheral antinociceptive effect induced by diclofenac was antagonized by NG-Nitro L-arginine (NOarg, 50 microg/paw), a NO synthase inhibitor and methylene blue (MB, 500 microg/paw), a guanylate cyclase inhibitor, and this antagonism was reversed by diazoxide (300 microg/paw), an ATP-sensitive K+ channel opener. We also suggest that an endogenous opioid system may not be involved since naloxone (50 microg/paw) did not affect diclofenac-induced antinociception in the PGE2-induced hyperalgesia model. This study provides evidence that the peripheral antinociceptive effect of diclofenac may result from activation of ATP-sensitive K+ channels, possible involving stimulation of L-arginine/NO/cGMP pathway, while Ca2+-activated K+ channels, voltage-dependent K+ channels as well as endogenous opioids appear not to be involved in the process.  相似文献   

12.
In this study, high-conductance Ca2+-activated K+ channels from rat skeletal muscle were incorporated into planar phospholipid bilayers, and discrete blockade of single channels by Ba2+ was studied. With 150 mM K+ held constant in the internal solution, increasing external K+ over the range 100-1,000 mM raises the rate of Ba2+ dissociation. This "enhancement effect," which operates at K+ concentrations 3-4 orders of magnitude higher than those required for the "lockin" effect described previously, depends on applied voltage, saturates with K+ concentration, and is not observed with Na+. The voltage dependence of the Ba2+ off-rate varies with external K+ in a way suggesting that K+, entering the channel from the external side, forces Ba2+ dissociation to the internal solution. With K+ held fixed in the external solution, the Ba2+ off-rate decreases as internal K+ is raised over the range 0-50 mM. This "lock-in" effect is similar to that seen on the external side (Neyton and Miller, 1988), except that the internal lock-in site is of lower affinity and shows only a fivefold preference for K+ over Na+. All the results taken together argue strongly that this channel's conduction pathway contains four sites of very high affinity for K+, all of which may be simultaneously occupied under normal conducting conditions. According to this view, the mutual destabilization resulting from this high ionic occupancy leads to the unusually high conductance of this K+-specific channel.  相似文献   

13.
In the absence of Na+ in the medium, the membrane potential of obligately alkalophilic Bacillus cells was found to be decreased by the addition of K+ to the medium, whereas K+ addition in the presence of Na+ had no effect. Rb+ showed essentially the same effect as K+. The decreased membrane potential was quickly restored by lowering the K+ concentration in the medium or by adding Na+ or Li+ to the medium. Thus, in the absence of Na+, the membrane potential of alkalophilic Bacillus seems to be affected by the concentration difference of K+ between inside and outside of the cell, and Na+ or Li+ in the medium suppresses the K+ effect. An exchange between extracellular Rb+ and intracellular K+ was observed in the absence of Na+. However, the exchange was greatly suppressed by the addition of Na+ or Li+ to the medium, indicating that Na+ in the medium modulates the K+ permeability of the alkalophilic Bacillus cell membrane. The K+-induced decrease in the membrane potential of alkalophilic Bacillus in the absence of Na+ is accounted for by the increased K+-permeability of the cell membrane.  相似文献   

14.
An increase in endogenous Na+,K+-ATPase inhibitor(s) with digitalis-like properties has been reported in chronic renal insufficiency, in Na+-dependent experimental hypertension and in some essential hypertensive patients. The present study specifies some properties and some biochemical characteristics of a semipurified compound from human urine having digitalis-like properties. The urine-derived inhibitor (endalin) inhibits Na+,K+-ATPase activity and [3H]-ouabain binding, and cross-reacts with anti-digoxin antibodies. The inhibitory effect on ATPases of endalin is higher on Na+,K+-ATPase than on Mg2+-ATPase and Ca2+-ATPase. The mechanism of endalin action on highly purified Na+,K+-ATPase was compared to that of ouabain and was similar in that it reversibly inhibited Na+,K+-ATPase activity; it inhibited Na+,K+-ATPase non-competitively with ATP; its inhibitory effect was facilitated by Na+; K+ decreased its inhibitory effect on Na+,K+-ATPase; it competitively inhibited ouabain binding to the enzyme; its binding was maximal in the presence of Mg2+ and Pi; it decreased the Na+ pump activity in human erythrocytes; it reduced serotonin uptake by human platelets; and it was diuretic and natriuretic in rat bioassay. The endalin differed from ouabain in only three aspects: its inhibitory effect was not really specific for Na+,K+-ATPase; its binding to the enzyme was undetectable in the presence of Mg2+ and ATP; it was not kaliuretic in rat bioassay. Endalin is a reversible and partial specific inhibitor of Na+,K+-ATPase, its Na+,K+-ATPase inhibition closely resembles that of ouabain and it could be considered as one of the natriuretic hormones.  相似文献   

15.
Lysosomes, isolated from various organs, exhibited an acidic interior (approximately equal to pH 5.2) when incubated in a buffer at neutral pH. K+-induced proton efflux was observed in spleen lysosomes, but not in liver or kidney lysosomes. The initial velocity of the proton efflux showed saturation kinetics with Km value of about 15 mM K+. Rb+ and Cs+ have an effect similar to K+, while Na+, Li+ or divalent cations have little or no effect. The properties of the K+ induced proton efflux correlated with the K+-induced depolarization of the lysosomes, suggesting the presence of K+-transport system(s) in lysosomal membranes.  相似文献   

16.
An increase in pH shifts the equilibrium between the K+-form and the Na+-form of the (Na+ + K+)-ATPase towards the Na+-form. pK for the proton effect on the equilibrium is decreased by modification of the enzyme with pyridoxal 5-phosphate. The reactivity of the enzyme towards pyridoxal 5-phosphate is increased by an increase in pH. Modification by pyridoxal 5-phosphate of epsilon-amino groups on lysine, which has a pK of about 8 with the enzyme in the K+-form and of about 7.4 in the Na+-form, shifts the equilibrium between E1Na+ and E2 towards E2, and the equilibrium between E2(K+occ) and E2 towards E2, but has no effect on the overall equilibrium between E1Na+ and E2(K+occ). An additional modification of epsilon-amino groups on lysine, which has a pK of 9.5-10 with the enzyme in the K+-form and of about 7.7 with the enzyme in the Na+-form, shifts the equilibrium between E2(K+occ) and E1Na+ towards E1Na+; this is due to a shift in the equilibrium between E2(K+occ) and E2 towards E2, but with no effect on the equilibrium between E1Na+ and E2. The results show that the transition from the K+-form to the Na+-form decreases the pK of lysine epsilon-amino groups on the enzyme, and that the protonation of these groups influences the equilibrium between the two conformations.  相似文献   

17.
1. Calcium binding to (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) preparations from beef and pig heart preparations of varying degrees of purity was measured. 2. Binding was inhibited by Mg2+, Na+ and K+. Inhibition by Na+ and K+ appeared to be due to an ionic strength effect. 3. Four classes of binding sites were identified with Kd values for calcium of about 0.03, 1, 15 and 200 micrometer. 4. Cyclic AMP-dependent phosphorylation of the enzyme by protein kinase (ATP: protamine O-phosphotransferase, EC 2.7.1.70) had no effect on (Na+ + K+)-ATPase activity. 5. Phosphorylation also had no effect on either Kd or Bmax for calcium binding at any of the four sites whether measured in the presence of absence of NaCl or KCl. 6. It is concluded that previous reports of an effect of phosphorylation on calcium binding to a (Na+ + K+)-ATPase preparation may have been due to the presence of membrane material not directly associated with (Na+ + K+)-ATPase.  相似文献   

18.
The effects of inhibition of the basolateral Na(+)-K(+)-ATPase (pump) on the apical low-conductance K+ channel of principal cells in rat cortical collecting duct (CCD) were studied with patch-clamp techniques. Inhibition of pump activity by removal of K+ from the bath solution or addition of strophanthidin reversibly reduced K+ channel activity in cell-attached patches to 36% of the control value. The effect of pump inhibition on K+ channel activity was dependent on the presence of extracellular Ca2+, since removal of Ca2+ in the bath solution abolished the inhibitory effect of 0 mM K+ bath. The intracellular [Ca2+] (measured with fura-2) was significantly increased, from 125 nM (control) to 335 nM (0 mM K+ bath) or 408 nM (0.2 mM strophanthidin), during inhibition of pump activity. In contrast, cell pH decreased only moderately, from 7.45 to 7.35. Raising intracellular Ca2+ by addition of 2 microM ionomycin mimicked the effect of pump inhibition on K+ channel activity. 0.1 mM amiloride also significantly reduced the inhibitory effect of the K+ removal. Because the apical low-conductance K channel in inside-out patches is not sensitive to Ca2+ (Wang, W., A. Schwab, and G. Giebisch, 1990. American Journal of Physiology. 259:F494-F502), it is suggested that the inhibitory effect of Ca2+ is mediated by a Ca(2+)-dependent signal transduction pathway. This view was supported in experiments in which application of 200 nM staurosporine, a potent inhibitor of Ca(2+)- dependent protein kinase C (PKC), markedly diminished the effect of the pump inhibition on channel activity. We conclude that a Ca(2+)- dependent protein kinase such as PKC plays a key role in the downregulation of apical low-conductance K+ channel activity during inhibition of the basolateral Na(+)-K(+)-ATPase.  相似文献   

19.
The role of K+ channels in mitogenesis was studied on mouse neuroblastoma cells by analysing the effects of various chemical agents on the whole-cell K+ current and the cell proliferation. The outward current recorded during depolarizations on undifferentiated cells was made up of a small and slow inactivating K+ current. Foetal calf serum, which is mitogen for neuroblastoma cells, shifted in opposite directions by 7-10 mV peak activation and steady-state inactivation-voltage curves of the K+ current. The resulting effect was an increase in K+ conductance. The effect on the resting K+ flux of the classical K+ channel blockers tetraethylammonium, 4-aminopyridine and capsaicin, the anticancer agent tamoxifen, the heat inactivated serum and the increase in external K+ concentration were estimated from their effects on the K+ current. The cell proliferation was determined under the same conditions. The results indicate that cell proliferation is correlated to the resulting K+ flux. It is supposed that mitogenesis is controlled by the intracellular Na+ concentration which, via a cell volume regulation, is a function of the K+ flux. A quantitative model is developed on the basis of these hypotheses.  相似文献   

20.
H Ozaki  H Nagase  N Urakawa 《FEBS letters》1984,173(1):196-198
Palytoxin (PTX), a highly toxic and sugar-containing substance isolated from Palythoa tuberculosa, caused K+ release from rabbit red blood cells. Cardiac glycosides, such as ouabain, convallatoxin, cymarin, digoxin and digitoxin, inhibited the PTX-induced K+ release. Their corresponding aglycones did not inhibit the K+ release, but antagonized the inhibitory effect of the glycosides. All these cardiotonic steroids equally inhibited the activity of (Na+ + K+)-ATPase prepared from hog cerebral cortex. These results suggest that the sugar moiety of the cardiac glycosides is important for the inhibitory effect on the K+ release induced by PTX and that the inhibition is not related to their inhibitory potency on the (Na+ + K+)-ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号