首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Translocation studies were undertaken on a simplified singlesource leaf-single sink leaf sugar be system to test variouspredictions of the Ferrier and Christy (1975) mathematical recoverymodel translocation inhibited by cold. Experiments were performedby using a steady state MC-labellii system for the source leafand translocation into the sink leaf was monitored with a Geiger-Muellsystem. A specially designed Peltier apparatus enabled coolingof the source petiole to 1 ?C at vario positions on the petiole,as well as over different lengths. Results of experiments testingchanges in (1) cold block length, (2) cold block position, and(3) sink unloading rate, showed little difference in ti timecourse of recovery. These results are at variance with the predictionsof the mathematical recove model. Additional experiments wereperformed to assess the potential involvement of phloe anastomosesin the recovery response. Selective petiolar incision/excisionexperiments showed: (1) that the monitored sink obtained 14C-labelledmaterial via only a few of the vascular bundles within the sourcepetiole, and (2) that anastomoses were capable of re-establishingtranslocation. This information was used to develop a revisedmodel of translocation recovery following cold-induced inhibition,ai this model is based on the utilization of adjoining, interconnectedsieve-tubes which become integrat into the pathway that suppliesthis sink. Key words: Phloem, Translocation, Cooling, Anastomoses  相似文献   

2.
Fisher DB 《Plant physiology》1970,45(2):107-113
A kinetic study was made of the translocation of 14C-photosynthate through soybean stems following pulse labeling and during steady state labeling of the first trifoliolate leaf. The translocation profile proceeded down the stem with little or no change in shape. Following pulse labeling, sucrose accounted for 90 to 95% of the radioactivity in the stem at all times up to 2 hours, at which time less than 3% of the activity was in an insoluble form. Kinetic data on the relative specific activities of sucrose in the leaf and petiole indicated that two-thirds of the petiolar sucrose was in the translocation stream and the remaining one-third was in a stationary pool which slowly accumulated sucrose from the translocation stream. With this assumption, the rate of sucrose efflux from the leaf was calculated to be 22 micrograms per minute, which was equivalent to a sucrose mass flux in the sieve tubes of 20 grams per square centimeter per hour.  相似文献   

3.
Mechanism of cyanide inhibition of Phloem translocation   总被引:6,自引:4,他引:2       下载免费PDF全文
Petiolar application of potassium cyanide inhibited 14C-assimilate translocation without affecting source leaf photosynthesis or phloem loading of sucrose in Phaseolus vulgaris. The inhibition of transport was correlated with disruption of the structural integrity of the sieve tubes (sieve pore blockage) rather than impairment of a metabolic process in the translocation path driving translocation.  相似文献   

4.
The steady state solutions of two mathematical models are used to evaluate Münch's pressure-flow hypothesis of phloem translocation. The models assume a continuous active loading and unloading of translocate but differ in the site of loading and unloading and the route of water to the sieve tube. The dimensions of the translocation system taken are the average observed values for sugar beet and are intended to simulate translocation from a mature source leaf to an expanding sink leaf. The volume flow rate of solution along the sieve tube, water flow rate into the sieve tube, hydrostatic pressure, and concentration of sucrose in the sieve tube are obtained from a numerical computer solution of the models. The mass transfer rate, velocity of translocation, and osmotic and hydrostatic pressures are consistent with empirical findings. Owing to the resistance to water flow offered by the lateral membranes, the hydrostatic pressure generated by the osmotic pressure can be considerably less than would be predicted by the solute concentration. These models suggest that translocation at observed rates and velocities can be driven by a water potential difference between the sieve tube and surrounding tissue and are consistent with the pressure-flow hypothesis of translocation.  相似文献   

5.
Careful cutting of the hypocotyl of Ricinus communis L. seedlings led to the exudation of pure sieve-tube sap for 2–3 h. This offered the possibility of testing the phloem-loading system qualitatively and quantitatively by incubating the cotyledons with different solutes of various concentrations to determine whether or not these solutes were loaded into the sieve tubes. The concentration which was achieved by loading and the time course could also be documented. This study concentrated on the loading of sucrose because it is the major naturally translocated sieve-tube compound. The sucrose concentration of sieve-tube sap was approx. 300 mM when the cotyledons were buried in the endosperm. When the cotyledons were excised from the endosperm and incubated in buffer, the sucrose concentration decreased gradually to 80–100 mM. This sucrose level was maintained for several hours by starch breakdown. Incubation of the excised cotyledons in sucrose caused the sucrose concentration in the sieve tubes to rise from 80 to 400 mM, depending on the sucrose concentration in the medium. Thus the sucrose concentration in the sieve tubes could be manipulated over a wide range. The transfer of labelled sucrose to the sieve-tube sap took 10 min; full isotope equilibration was finally reached after 2 h. An increase of K+ in the medium or in the sieve tubes did not change the sucrose concentration in the sievetube sap. Similarly the experimentally induced change of sucrose concentration in the sieve tubes did not affect the K+ concentration in the exudate. High concentrations of K+, however, strongly reduced the flow rate of exudation. Similar results were obtained with Na+ (data not shown). The minimum translocation speed in the sieve tubes in vivo was calculated from the growth increment of the seedling to be 1.03 m·h-1, a value, which on average was also obtained for the exudation system with the endosperm attached. This comparison of the in-vivo rate of phloem transport and the exudation rate from cut hypocotyls indicates that sink control of phloem transport in the seedlings of that particular age was small, if there was any at all, and that the results from the experimental exudation system were probably not falsified by removal of the sink tissues.Abbreviations PTS 3-hydroxy-5,8, 10-pyrenetrisulfonate  相似文献   

6.
Distorted phytochrome action spectra in green plants   总被引:6,自引:0,他引:6  
A. M. Jose  E. Schäfer 《Planta》1978,139(1):25-28
An evaluation was made of the extent which a Münch-type pressure flow mechanism (i.e., osmotically-generated pressure flow) might contribute to phloem transport in soybean. Estimates of sucrose concentrations in source (leaf) and sink (root) sieve tubes were obtained by a negativestaining procedure. Water potential measurements of the leaf and of the nutrient solution allowed calculation of the turgor pressures in source and sink sieve tubes. The turgor difference between source and sink sieve tubes was compared to that required to drive translocation at the observed velocity between the source and sink, as measured by [14C] photosynthate movement. Sieve-tube conductivity was calculated from the sieve-tube dimensions, assuming an essentially unobstructed pathway. In three experiments, the sucrose concentration was consistently higher in source sieve tubes (an average of 11.5%) than in sink sieve tubes (an average of 5.3%). The ratio of these values (2.3:1) agreed reasonably well with an earlier ratio for source/sink sieve tube concentrations of 1.8:1, obtained by quantitative microautoradiography. The resulting calculated turgor difference (an average of 4.1 bars) was adequate to drive a pressure flow mechanism at the observed translocation velocities (calculated to require a turgor difference of 1.2 to 4.6 bars). No other force need be presumed to be involved.This work was presented in part at a joint U.S.-Australian Conference on Transport and Transfer Processes in Plants, Canberra, Australia, December 15–20, 1975; see Fisher (1976)  相似文献   

7.
The effects of cold girdling of the transport phloem at the hypocotyl of Ricinus communis on solute and water transport were investigated. Effects on the chemical composition of saps of phloem and xylem as well as of stem tissue were studied by conventional techniques and the water flow in the phloem was investigated by NMR imaging. Cold girdling reduced the concentration of sucrose but not that of inorganic solutes or amino acids in phloem saps. The possibility that cold treatment inhibited the retrieval of sucrose into the phloem, following leaching from the sieve tubes along a chemical gradient is discussed. Leaching of other solutes did not occur, as a result of missing promoting gradients in stem tissue. Following 3 d of cold girdling, sugar concentration increased and starch was synthesized and accumulated in stem tissue above the cold girdling region and along the cold-treated phloem pathway due to leaching of sugars from the phloem. Only in the very first period of cold girdling (<15-30 min) was mass flow inhibited, but recovered in the rest of cold treatment period to values similar to the control period before and the recovery period after the cold treatment. It is concluded that cold treatment affected phloem transport through two independent and reversible processes: (1) a permanent leaching of sucrose from the phloem stem without normal retrieval during cold treatment, and (2) a short-term inhibition of mass flow at the beginning of cold treatment, possibly involving P proteins. Possible further mechanisms for reversible inhibition of water flow are discussed.  相似文献   

8.
A mass-balanced, finite-difference solution to Münch's osmotically generated pressure-flow hypothesis is developed for the study of non-steady-state sucrose transport in the phloem tissue of plants. Major improvements over previous modeling efforts are the inclusion of wall elasticity, nonlinear functions of viscosity and solute potential, an enhanced calculation of sieve pore resistance, and the introduction of a slope-limiting total variation diminishing method for determining the concentration of sucrose at node boundaries. The numerical properties of the model are discussed, as is the history of the modeling of pressure-driven phloem transport. Idealized results are presented for a sharp, fast-moving concentration front, and the effect of changing sieve tube length on the transport of sucrose in both the steady-state and non-steady-state cases is examined. Most of the resistance to transport is found to be axial, rather than radial (via membrane transport), and most of the axial resistance is due to the sieve plates. Because of the sieve plates, sieve tube elasticity does not provide a significant enhancement to conductivity at high pressure, as previously suspected. The transit time of sucrose through a sieve tube is found to be inversely proportional to the square of the sieve tube's length; following that observation, it is suggested that 20 1-m-long sieve tubes could transport sucrose 20 times faster than a single 20 m sieve tube. Short sieve tubes would be highly sensitive to differentials between loading and unloading rate, and would require close cooperation with adjacent companion cells for proper function.  相似文献   

9.
D. C. J. Gardner  A. J. Peel 《Planta》1972,102(4):348-356
Summary Experiments have been performed on the effect of localised low (0°C) temperature application on solute concentration and fluxes in the sieve elements of willow. Sieve tube exudate was obtained via the severed stylets of the aphid Tuberolachnus salignus (Gmelin). In stem segments, low temperature caused a fall in both the concentration and flux of sucrose. No recovery was observed during a 24 h cold application period. The concentrations of ATP and potassium were generally also reduced, though the effect on the fluxes of these solutes was not as marked. Both ATP and potassium appear to be translocated along the sieve tubes of stem segments as evidenced by girdling experiments. In leafy cuttings low temperature consistently reduced the concentration of sucrose in the sieve tube exudate. These data are discussed in relation to previous work on low temperature effects on the phloem transport system of willow.  相似文献   

10.
Companion cell-specific inhibition of the potato sucrose transporter SUT1   总被引:26,自引:3,他引:23  
In many plants, translocation of sucrose from mesnsophyll to phloem for long-distance transport is carrier-mediated. The sucrose H+-symporter gene SUT1 from potato is expressed at high levels in the phloem of mature, exporting leaves and at lower levels in other organs. Inhibition of SUT1 by expression of an antisense gene in companion cells under control of the rolC promoter leads to accumulation of high amounts of soluble and insoluble carbohydrates in leaves and inhibition of photosynthesis. The distribution of in situ localized starch does not correspond with areas of reduced photosynthesis as shown by fluorescence imaging. Dissection of antisense effects on sink and source organs by reciprocal grafts shows that inhibition of transporter gene expression in leaves is sufficient to produce chlorosis in leaves and reduced tuber yield. In contrast to the arrest of plasmodesmal development found in plants that express yeast invertase in the apoplast, in mature leaves of sucrose transporter antisense plants plasmodesmata are branched and have median cavities. These data strongly support an apoplastic mode of phloem loading in potato, in which the sucrose transporter located at the plasma membrane of the sieve element/companion cell complex represents the primary route for sugar uptake into the long-distance translocation pathway.  相似文献   

11.
Gabriele Orlich 《Planta》1998,206(2):266-271
The aim of this study was to reveal the factors determining sucrose export and volume flow through the sieve tubes in Ricinus communis L. seedlings. The cotyledons take up sucrose from the apoplasm in vivo, and export most of it to the growing sinks, hypocotyl and root. This simple source-sink system allowed sucrose uptake and export to be studied under controlled conditions with respect to apoplasmic sucrose concentrations. From the additional knowledge of the sucrose concentrations in the mesophyll and the sieve tubes, transmembrane concentration differences were calculated. The volume flow rate along the sieve tubes could be calculated from the export rate and the sucrose concentration in the sieve tubes. While the export rate exhibited saturation kinetics, the volume flow rate decreased at high external sucrose concentrations. The export rate correlated with the sucrose uptake rate, the volume flow rate correlated with the sucrose concentration (osmotic pressure) difference across the sieve-tube plasma membrane, the driving force for transmembrane water flux. From these data it can be concluded that sucrose export and the volume flow through the sieve tubes are determined by activities of the source. Export out of Ricinus cotyledons was considerably higher than export out of green source leaves of different species. The concomitant comparatively low sucrose concentration in the sieve-tube sap of the seedlings can thus be attributed to a very high water flux into and along the sieve tubes associated with the high sucrose flux. Received: 28 November 1997 / Accepted: 4 April 1998  相似文献   

12.
Earlier studies have shown that the retarding effect of low petiolar temperatures on sucrose transport through sugar beet (Beta vulgaris L.) petioles is markedly time-dependent. Although the initial effect of chilling the petiole to near 0 C is severely inhibitory, translocation rates soon recover (usually within about 2 hours) to values at or near the control rate. In the present studies, selected metabolic parameters were measured simultaneously with translocation. No stoichiometric relationships among petiolar sucrose transport, petiolar respiration (CO2 production), and calculated petiolar ATP turnover rates were evident. It appears that the major sources of energy input energizing carbohydrate transport in sieve tubes function mainly at either loading or unloading sites and not at the level of individual sieve-tube elements.  相似文献   

13.
Geiger DR  Saunders MA  Cataldo DA 《Plant physiology》1969,44(12):1657-1663,1665
Accumulation of translocate during steady-state labeling of photosynthate was measured in the source leaf petioles of sugar beet (Beta vulgaris L. monogerm hybrid). During an 8-hr period, 2.7% of the translocate or 0.38 μg carbon/min was accumulated per cm petiole. Material was stored mainly as sucrose and as compounds insoluble in 80% ethanol. The minimum peak velocity of translocation approached an average of 54 cm/hr as the specific activity of the 14CO2 pulse was progressively increased. The ratio of cross sectional area required for translocation to actual sieve tube area in the petiole was 1.2. A regression analysis of translocation rate versus sieve tube cross sectional area yielded a coefficient of 0.76. The specific mass transfer rate in the petiole was 1.4 g/hr cm2 phloem or 4.8 g/hr cm2 sieve tube. Histoautoradiographic studies indicated that translocation occurs through the area of phloem occupied by sieve tubes and companion cells while storage occurs in these cells plus cambium and phloem parenchyma cells. The ability of the petiole to act as a sink for translocate is consistent with the concept that storage along path tissue serves to buffer sucrose concentration in the translocate during periods of fluctuating assimilation.  相似文献   

14.
The effects of crotin I and crotin II on the partial reactions of polypeptide chain elongation were investigated and compared with the known effects of ricin. Crotin II was a more powerful inhibitor than crotin I, but no qualitative differences between the two crotins were found. Rat liver ribosomes, preincubated with crotins and washed through sucrose gradients, remained inactive in protein synthesis. Among the individual steps of elongation, the peptidyltransferase reaction was unaffected by crotins, but some of the reactions that involve the interaction of elongation factors 1 and 2 with ribosomes were modified. A strong inhibition of the binding of elongation factor 2 to ribosomes and a stimulation of the elongation factor2-dependent GTP hydrolysis were observed; this indicates the formation of a very unstable elongation factor 2--GDP--ribosome complex, which, however, allows a single round of translocation to take place in the presence ofelongation factor 2 and added GTP. The elongation factor 1-dependent GTP hydrolysis was inhibited by crotins, whereas the enzymic binding of aminoacyl-tRNA, to both rat liver and Artemia salina ribosomes, was scarcely affected. In a protein-synthesizing system the inhibition by crotins and by ricin leads to a block of the nascent peptides on the ribosomal aminoacyl-tRNA site, an effect consistent with inhibition at the level of translocation. The mechanism of action of crotins appears to be very similar to that of ricin.  相似文献   

15.
FACTS AND MECHANISMS: A COMPARATIVE SURVEY   总被引:8,自引:0,他引:8  
1. This review aims to survey the process of translocation of solutes in the phloem, including the experimental observations of the process, hypothetical mechanisms with their consequences, and the compatibility of these mechanisms with the experimental information. 2. Some properties of the sieve elements are summarized. The characteristic constituent of the sieve elements is a fibrillar protein, P-protein, of 60–120 A. filaments, whose function and distribution in intact sieve elements are still the subject of debate. 3. Apart from the very high levels of sucrose (0.3–0.9 m) and of specific amino acids and amides (10–100 mm), the contents of the sieve elements are characterized by close regulation of the ionic content; thus K (20–85 mM) and Mg (2.3–23 mM) are very high relative to Na (0.06–0.3 mM) and Ca (0.25–0.5 mM) respectively; the pH is also very high. 4. Convective movement (mass flow) is demanded by the very high rates of mass transfer. The longitudinal sucrose flux is about 2.5 times 106 pmoles cm.-2 sec.-1 in petioles, and several times higher in fruits or trees; this is about 105 times any reasonable transmembrane flux, and demands very large loading areas for each file of sieve elements. It also renders unlikely any mechanism demanding an associated trans-membrane flux of any solute which approaches within several orders of magnitude of the sucrose flow. 5. The evidence from tracer measurements (of 14C or of heat) favour a mass flow of some kind in the sieve tube, with only restricted exchange between the flowing stream and other sucrose pools in the phloem (or out of it). It is not consistent with ready equilibration with a large stationary reservoir of sucrose, or with reverse flows. There is close correspondence between the input and output kinetics of a length of the trans-location path, or of build-up curves at different distances; hence lateral exchange from the moving stream is relatively minor. 6. Tracer measurements show that loading into the translocation stream is relatively slow, and is the main determining factor in the time course of appearance of tracer down the stem, or in the profile of radioactivity against distance in the stem. This applies not only to the initial steep front of radioactivity in the stem, but also to the error function profiles found at longer times in some plants; those do not arise as has been suggested, by exchange in a two-way system of transcellular strands, but are a reflexion of the loading kinetics. 7. The evidence for or against bidirectional movement is equivocal. In conditions in which there is a strong source/sink gradient imposed, the movement of both labelled carbon and heat is consistent with a one-way system, and is difficult to reconcile with two-way movement. However, in the absence of any strong gradient there is evidence for bidirectional movement. It is suggested that the pattern of flow, as well as the direction and rate of flow, may be controlled by the source/sink relations along the path. 8. Electro-osmosis as a mechanism for translocation seems to be ruled out by a number of theoretical difficulties. The most basic of these is the fact that an electro-osmotic mechanism is inherently incapable of the transport of both anions and cations, whereas the phloem can do both. There are further quantitative difficulties. The ratio of sucrose to potassium in the sieve elements is about 10, and if potassium provides the current a longitudinal potassium flux of about 2.5 times 106 pmoles cm.-2 sec.-l would therefore be required in petioles, and considerably more in fruits or trees. This raises very great difficulties of potassium circulation to provide a complete current loop, in the path of recirculation, the size of the transmembrane fluxes required, and the energetics of pumping enough potassium to maintain the driving force for electro-osmosis. 9. Possibilities of activated mass flow, by a mechanism similar to that involved in protoplasmic streaming are discussed. Experimental work on streaming in Nitella and in the slime mould Physarum is reviewed, including the evidence that in both these systems, fibrils, made up of 50–70 Å. filaments, are responsible for the production of the motive force, and that these fibrils are akin to actomyosin. 10. Possible ways in which fibrillar P-protein might be organized in the sieve elements to produce translocation are discussed. The force generated by Nitella-type filaments at the density of P-protein in phloem exudate would be more than adequate for the observed rates of flow. Alternatively the fibrillar arrangement in the slime mould is capable of producing volume flows as large as those in phloem. This hypothesis provides a function for P-protein, and is also consistent with the curious ionic concentrations characteristic of sieve elements. 11. It is suggested that the control by the source/sink relations of the pattern, rate and direction of flow in the phloem might be achieved by the orientation of force-generating microfilaments by a Münch-type flow. Such a flow is inevitable if sucrose is pumped in at one end of the path and removed at the other; it seems to be inadequate to explain the rates of mass transfer, but it might be responsible for inducing the correct orientation and polarity in the motive force.  相似文献   

16.
Further studies are presented characterizing the time-course response of sucrose translocation in sugar beet (Beta vulgaris L. cv Klein Wanzleben) to low temperature inhibition. Only the temperature of a 2 cm zone of the source-leaf petiole was varied (1° vs 25°, approximately). The half-time of inhibition, defined as the time required for 50% inhibition of the control or pre-cooling rate, varied from 4 to 15 minutes, and the half-time of recovery from 30 to 100 minutes. Maximum inhibition varied from 68 to 92%. Possible uncertainties in evaluating these parameters are discussed. When the duration of the low temperature period was sufficient to permit essentially full recovery, subsequent re-warming of the petiole zone to 25° to 30° effected little or no increase in the translocation rate. It is evident that the interposition between source and sink of a 2 cm petiole zone maintained at a temperature generally inhibitory to physiological processes resulted in little or no impairment to the translocation process, after a suitable thermal adaptation period. Thermally adapted petiole systems de-adapted after periods as short as 1 hour at 25°.  相似文献   

17.
Sucrose, hexoses, and raffinose play key roles in the plant metabolism. Sucrose and raffinose, produced by photosynthesis, are translocated from leaves to flowers, developing seeds and roots. Translocation occurs in the sieve elements or sieve tubes of angiosperms. But how is sucrose loaded into and unloaded from the sieve elements? There seem to be two principal routes: one through plasmodesmata and one via the apoplasm. The best-studied transporters are the H+/SUCROSE TRANSPORTERs (SUTs) in the sieve element-companion cell complex. Sucrose is delivered to SUTs by SWEET sugar uniporters that release these key metabolites into the apoplasmic space. The H+/amino acid permeases and the UmamiT amino acid transporters are hypothesized to play analogous roles as the SUT-SWEET pair to transport amino acids. SWEETs and UmamiTs also act in many other important processes—for example, seed filling, nectar secretion, and pollen nutrition. We present information on cell type-specific enrichment of SWEET and UmamiT family members and propose several members to play redundant roles in the efflux of sucrose and amino acids across different cell types in the leaf. Pathogens hijack SWEETs and thus represent a major susceptibility of the plant. Here, we provide an update on the status of research on intercellular and long-distance translocation of key metabolites such as sucrose and amino acids, communication of the plants with the root microbiota via root exudates, discuss the existence of transporters for other important metabolites and provide potential perspectives that may direct future research activities.

An update on intercellular and long-distance translocation of sugars and amino acids, including plant-root microbiota communication, other metabolite transporters is provided, and perspectives are discussed.  相似文献   

18.
Mechanism of inhibition of translocation by localized chilling   总被引:16,自引:11,他引:5       下载免费PDF全文
Arrhenius plots of translocation velocity as a function of petiole temperature show a marked increase in temperature dependence below 10 C in bean (a chilling-sensitive species) but not in sugar beet (chilling-resistant). The increased temperature dependence below 10 C was not observed for cytoplasmic streaming or oxygen uptake in bean. Bean petioles were served to release pressure in order to determine whether sieve tubes are obstructed in cold-treated petioles. The resulting pressure release caused serious displacement of the crystalline protein bodies in the sieve tubes of petioles at 25 C, but in those locally cooled to 0 C for 30 minutes little displacement occurred, indicating obstruction in the latter. An ultrastructural study of sieve tubes in tissue frozen rapidly in situ and dehydrated by freeze substitution revealed that treatment at 0 C for 30 minutes caused structural alteration and displacement of the cytoplasmic material lining the sieve tube wall resulting in occlusion of sieve plates. The sieve plates of the control petioles at 25 C were generally clear of obstructions. The results indicate that inhibition of translocation by chilling in chilling-sensitive plants results from physical blockage of sieve plates rather than from direct inhibition of a metabolic process which drives translocation.  相似文献   

19.
The extent to which wheat grain growth is dependent on transport pool solute concentration was investigated by the use of illumination and partial grain removal to vary solute concentrations in the sieve tube and endosperm cavity saps of the wheat ear (Triticum aestivum L.). Short-term grain growth rates were estimated indirectly from the product of phloem area, sieve tube sap concentration, and 32P translocation velocity. On a per grain basis, calculated rates of mass transport through the peduncle were fairly constant over a substantial range in other transport parameters (i.e. velocity, concentration, phloem area, and grain number). The rates were about 40% higher than expected; this probably reflects some unavoidable bias on faster-moving tracer in the velocity estimates. Sieve tube sap concentration increased in all experiments (by 20 to 64%), with a concomitant decline in velocity (to as low as 8% of the initial value). Endosperm cavity sucrose concentration also increased in all experiments, but cavity sap osmolality and total amino acid concentration remained nearly constant. No evidence was found for an increase in the rate of mass transport per grain through the peduncle in response to the treatments. This apparent unresponsiveness of grain growth rate to increased cavity sap sucrose concentration conflicts with earlier in vitro endosperm studies showing that sucrose uptake increased with increasing external sucrose concentration up to 150 to 200 millimolar.  相似文献   

20.
A cold-tolerant line (NY-1) and a cold-sensitive cultivar (Jinyan 4) of cucumber (Cucumis sativus) were treated with temperatures of 28 degrees C/22 degrees C or 28 degrees C/12 degrees C (day/night) in a 10-h photoperiod. Carbohydrates and related enzymes were assayed from 0 to 4 h after the start of the dark period. Compared to the normal night temperature (22 degrees C, control), sucrose, stachyose and galactinol increased in mature leaves under cold-night treatment (12 degrees C) while sucrose, glucose and fructose in fruits remained unchanged. In peduncles, where stachyose is catabolized to sucrose after long-distance transport, cold nights simultaneously induced a significant increase of stachyose (substrate) and a decrease of sucrose (product), indicating that the metabolic step from stachyose to sucrose in peduncles is crucial to translocation inhibition in cold nights. This decrease was more pronounced in the cold-sensitive cultivar. Similar growth rates of fruits on one-fruit and two-fruit plants under cold-night treatment further confirmed that it is sink activity rather than source supply that is limiting the source-sink translocation. No significant genotypic differences in enzyme activities involved in the stachyose-sucrose conversion, including alkaline alpha-galactosidase, acid alpha-galactosidase, galactokinase, uridine diphosphate (UDP)-galactose pyrophosphorylase, UDP-glucose-4'-epimerase and sucrose synthase, were observed when assayed in an adenosine triphosphate (ATP)-rich in vitro environment. However, the ATP concentration was much higher in peduncles of the cold-tolerant line, indicating that a limiting ATP supply may be partially responsible for the stronger inhibition of the stachyose-sucrose pathway observed in the cold-sensitive cultivar (Jinyan 4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号