首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An acyl spin-label derivative of 5-aminoeosin (5-SLE) was chemically synthesized and employed in studies of rotational dynamics of the free probe and of the probe when bound noncovalently to bovine serum albumin using the spectroscopic techniques of fluorescence anisotropy decay and electron paramagnetic resonance (EPR) and their long-lifetime counterparts phosphorescence anisotropy decay and saturation transfer EPR. Previous work (Beth, A. H., Cobb, C. E., and J. M. Beechem, 1992. Synthesis and characterization of a combined fluorescence, phosphorescence, and electron paramagnetic resonance probe. Society of Photo-Optical Instrumentation Engineers. Time-Resolved Laser Spectroscopy III. 504-512) has shown that the spin-label moiety only slightly altered the fluorescence and phosphorescence lifetimes and quantum yields of 5-SLE when compared with 5-SLE whose nitroxide had been reduced with ascorbate and with the diamagnetic homolog 5-acetyleosin. In the present work, we have utilized time-resolved fluorescence anisotropy decay and linear EPR spectroscopies to observe and quantitate the psec motions of 5-SLE in solution and the nsec motions of the 5-SLE-bovine serum albumin complex. Time-resolved phosphorescence anisotropy decay and saturation transfer EPR studies have been carried out to observe and quantitate the microseconds motions of the 5-SLE-albumin complex in glycerol/buffer solutions of varying viscosity. These latter studies have enabled a rigorous comparison of rotational correlation times obtained from these complementary techniques to be made with a single probe. The studies described demonstrate that it is possible to employ a single molecular probe to carry out the full range of fluorescence, phosphorescence, EPR, and saturation transfer EPR studies. It is anticipated that "dual" molecular probes of this general type will significantly enhance capabilities for extracting dynamics and structural information from macromolecules and their functional assemblies.  相似文献   

2.
The reduction in EPR signal intensity of nitroxide spin-labels by ascorbic acid has been measured as a function of time to investigate the immersion depth of the spin-labeled M2δ AChR peptide incorporated into a bicelle system utilizing EPR spectroscopy. The corresponding decay curves of n-DSA (n=5, 7, 12, and 16) EPR signals have been used to (1) calibrate the depth of the bicelle membrane and (2) establish a calibration curve for measuring the depth of spin-labeled transmembrane peptides. The kinetic EPR data of CLS, n-DSA (n=5, 7, 12, and 16), and M2δ AChR peptide spin-labeled at Glu-1 and Ala-12 revealed excellent exponential and linear fits. For a model M2δ AChR peptide, the depth of immersion was calculated to be 5.8? and 3? for Glu-1, and 21.7? and 19? for Ala-12 in the gel-phase (298K) and L(α)-phases (318K), respectively. The immersion depth values are consistent with the pitch of an α-helix and the structural model of M2δ AChR incorporated into the bicelle system is in a good agreement with previous studies. Therefore, this EPR time-resolved kinetic technique provides a new reliable method to determine the immersion depth of membrane-bound peptides, as well as, explore the structural characteristics of the M2δ AChR peptide.  相似文献   

3.
The time-resolved fluorescence polarization anisotropy signal has been measured from fluorescent-labeled myosin cross-bridges in single glycerinated muscle fibers in the relaxed and rigor states. In one experimental configuration, the polarization of the excitation light and the fiber axis are aligned, and the anisotropy is sensitive to rotational motions of the probes about axes other than the fiber axis. The rotational correlation times are approximately 1000 ns for relaxed fibers and greater than 7000 ns for rigor fibers. In another experimental configuration, the excitation light polarization is perpendicular to the fiber axis, and its propagation vector has a component parallel to the fiber axis so that the anisotropy is sensitive to probe rotational motion about different axes, including the fiber axis. In this configuration, the rotational correlation times are approximately 300 ns for both relaxed and rigor fibers. The theory of rotational diffusion in a potential described in a related paper [Burghardt, T.P. (1985) Biophys. J. (in press)] is applied to the relaxed fiber data.  相似文献   

4.
I D Johnson  B S Hudson 《Biochemistry》1989,28(15):6392-6400
The effects of detergent [deoxycholate (DOC) and phospholipid [dimyristoylphosphatidylcholine (DMPC)] environments on the rotational dynamics of the single tryptophan residue 26 of bacteriophage M13 coat protein have been investigated by using time-resolved single photon counting measurements of the fluorescence intensity and anisotropy decay. The total fluorescence decay of tryptophan-26 is complex but rather similar in DOC as compared to DMPC when analyzed in terms of a lifetime distribution (exponential series method). This similarity, in conjunction with the almost identical steady-state fluorescence spectra, indicates only minor differences between the tryptophan environments in DOC and DMPC. The reorientational dynamics of tryptophan-26 are dominated by slow rotation of the entire protein in both detergent and phospholipid environments. The resolved anisotropy decay in DOC can be approximated by a simple hydrodynamic model of protein/detergent micelle rotational diffusion, although the data indicative slightly greater complexity in the rotational motion. The tryptophan fluorescence anisotropy is not sensitive to protein conformational changes in DOC detected by nuclear magnetic resonance on the basis of pH independence in the range 7.5-9.1. In DMPC bilayers, restricted tryptophan motion with a correlation time of approximately 2 ns is observed together with a second very slow reorientational component. Resolution of the time constant for this slow rotation is obscured by the tryptophan fluorescence time window being too short to clearly locate its anisotropic limit. The possible contribution made by axial rotational diffusion of the protein to this slow rotational process is discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Partitioning and molecular dynamics of 2,2,6,6,-tetramethylpiperedine-1-oxyl (TEMPO) nitroxide radicals in large unilamellar liposomes (LUV) composed from 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine were investigated by using very high frequency electron paramagnetic resonance (EPR) spectroscopy. Experiments carried out at a microwave frequency of 94.3 GHz completely resolved the TEMPO EPR spectrum in the aqueous and hydrocarbon phases. An accurate computer simulation method combined with Levenberg-Marquardt optimization was used to analyze the TEMPO EPR spectra in both phases. Spectral parameters extracted from the simulations gave the actual partitioning of the TEMPO probe between the LUV hydrocarbon and aqueous phases and allowed analysis of picosecond rotational dynamics of the probe in the LUV hydrocarbon phase. In very high frequency EPR experiments, phase transitions in the LUV-TEMPO system were observed as sharp changes in both partitioning and rotational correlation times of the TEMPO probe. The phase transition temperatures (40.5 +/- 0.2 and 32.7 +/- 0.5 degrees C) are in agreement with previously reported differential scanning microcalorimetry data. Spectral line widths were analyzed by using existing theoretical expressions for motionally narrowed nitroxide spectra. It was found that the motion of the small, nearly spherical, TEMPO probe can be well described by anisotropic Brownian diffusion in isotropic media and is not restricted by the much larger hydrocarbon chains existing in ripple structure (P beta') or fluid bilayer structure (L alpha) phases.  相似文献   

6.
We have studied submicrosecond and microsecond rotational motions within the contractile protein myosin by observing the time-resolved anisotropy of both absorption and emission from the long-lived triplet state of eosin-5-iodoacetamide covalently bound to a specific site on the myosin head. These results, reporting anisotropy data up to 50 microseconds after excitation, extend by two orders of magnitude the time range of data on time-resolved site-specific probe motion in myosin. Optical and enzymatic analyses of the labeled myosin and its chymotryptic digests show that more than 95% of the probe is specifically attached to sulfhydryl-1 (SH1) on the myosin head. In a solution of labeled subfragment-1 (S-1) at 4 degrees C, absorption anisotropy at 0.1 microseconds after a laser pulse is about 0.27. This anisotropy decays exponentially with a rotational correlation time of 210 ns, in good agreement with the theoretical prediction for end-over-end tumbling of S-1, and with times determined previously by fluorescence and electron paramagnetic resonance. In aqueous glycerol solutions, this correlation time is proportional to viscosity/temperature in the microsecond time range. Furthermore, binding to actin greatly restricts probe motion. Thus the bound eosin is a reliable probe of myosin-head rotational motion in the submicrosecond and microsecond time ranges. Our submicrosecond data for myosin monomers (correlation time 400 ns) also agree with previous results using other techniques, but we also detect a previously unresolvable slower decay component (correlation time 2.6 microseconds), indicating that the faster motions are restricted in amplitude. This restriction is not consistent with the commonly accepted free-swivel model of S-1 attachment in myosin. In synthetic thick filaments of myosin, both fast (700 ns) and slow (5 microseconds) components of anisotropy decay are observed. In contrast to the data for monomers, the anisotropy of filaments has a substantial residual component (26% of the initial anisotropy) that does not decay to zero even at times as long as 50 microseconds, implying significant restriction in overall rotational amplitude. This result is consistent with motion restricted to a cone half-angle of about 50 degrees. The combined results are consistent with a model in which myosin has two principal sites of segmental flexibility, one giving rise to submicrosecond motions (possibly corresponding to the junction between S-1 and S-2) and the other giving rise to microsecond motions (possibly corresponding to the junction between S-2 and light meromyosin).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
In many proteins fluorescence from single tryptophan exhibits a nonexponential decay function. To elucidate the origin of this nonexponential decay, we have examined the fluorescence decay function and time-resolved fluorescence anisotropy of a fluorophore covalently bound to a macromolecule by solving a rotational analogue of the Smoluchowski equation. An angular-dependent quenching constant and potential energy for the fluorophore undergoing internal rotation were introduced into the equation of motion for fluorophore. Results of numerical calculations using the equations thus obtained predict that both the fluorescence decay function and time-resolved anisotropy are dependent on rotational diffusion coefficients of fluorophore and potential energy for the internal rotation. The method was applied to the observed fluorescence decay curve of the single tryptophan in apocytochrome c from horse heart. The calculated decay curves fit the observed ones well.  相似文献   

8.
Di-tert-butylnitroxide dissolved in an aqueous suspension of egg yolk lecithin vesicles is distributed between the two phases. Partition coefficients of the nitroxide between the lipid and the water, calculated from the nitroxide electron paramagnetic resonance (EPR) spectra, decrease with decreasing temperature until approximately the freezing point of the solvent. Below this temperature the nitroxide is detected only in the lecithin. The rotational correlation times of the spin label present in the lecithin were calculated for the temperature range from +45 to -60 degrees C. At low temperatures, the EPR spectra are characteristic of a superposition of two spectra resulting from the nitroxide dissolved in the lipid in two environments with different rotational correlation times.  相似文献   

9.
We have measured the microsecond rotational motions of myosin heads in muscle cross-bridges under physiological ionic conditions at 4 degrees C, by detecting the time-resolved phosphorescence of eosin-maleimide covalently attached to heads in skeletal muscle myofibrils. The anisotropy decay of heads in rigor (no ATP) is constant over the time range from 0.5 to 200 microsecond, indicating that they do not undergo rotational motion in this time range. In the presence of 5 mM MgATP, however, heads undergo complex rotational motion with correlation times of about 5 and 40 microsecond. The motion of heads in relaxed myofibrils is restricted out to 1 ms, as indicated by a nonzero value of the residual anisotropy. The anisotropy decay of eosin-labeled myosin, extracted from labeled myofibrils, also exhibits complex decay on the 200-microsecond time scale when assembled into synthetic thick filaments. The correlation times and amplitudes of heads in filaments (under the same ionic conditions as the myofibril experiments) are unaffected by MgATP and very similar to the values for heads in relaxed myofibrils. The larger residual anisotropy and longer correlation times seen in myofibrils are consistent with a restriction of rotational motion in the confines of the myofibril protein lattice. These are the first time-resolved measurements under physiological conditions of the rotational motions of cross-bridges in the microsecond time range.  相似文献   

10.
A reference method for the deconvolution of polarized fluorescence decay data is described. Fluorescence lifetime determinations for p-terphenyl, p-bis[2-(5-phenyloxazolyl)]benzene and N-acetyltryptophanamide (AcTrpNH2) show that with this method more reliable fits of the decays can be made than with the scatterer method, which is most frequently used. Analysis of the AcTrpNH2 decay with p-terphenyl as the reference compound yields an excellent fit with lifetimes of 2.985 ns for AcTrpNH2 and 1.099 ns for p-terphenyl (20 degrees C), whereas the AcTrpNH2 decay cannot be satisfactorily fitted when the scatterer method is used. The frequency of the detected photons is varied to determine the conditions where pulse pile-up starts to affect the measured decays. At detection frequencies of 5 kHz and 15 kHz, which corresponds to 1.7% and 5% respectively of the rate of the excitation photons no effects are found. Decays measured at 30 kHz (10%) are distorted, indicating that pile-up effects play a role at this frequency. The fluorescence and fluorescence anisotropy decays of the tryptophan residues in the proteins human serum albumin, horse liver alcohol dehydrogenase and lysozyme have been reanalysed with the reference method. The single tryptophan residue of the albumin is shown to be characterized by a triple-exponential fluorescence decay. The anisotropy decay of albumin was found to be mono-exponential with a rotational correlation time of 26 ns (20 degrees C). The alcohol dehydrogenase has two different tryptophan residues to which single lifetimes are assigned. It is found that the rotational correlation time for the dehydrogenase changes with excitation wavelength (33 ns for lambda ex = 295 nm and 36 ns for lambda ex = 300 nm at 20 degrees C), indicating a nonspherical protein molecule. Lysozyme has six tryptophan residues, which give rise to a triple-exponential fluorescence decay. A single-exponential decay with a rotational correlation time of 3.8 ns is found for the anisotropy. This correlation time is significantly shorter than that arising from the overall rotation and probably originates from intramolecular, segmental motion.  相似文献   

11.
Previous studies on spin-labeled F-actin (MSL-actin), using saturation transfer electron paramagnetic resonance (ST-EPR), have demonstrated that actin has submillisecond rotational flexibility and that this flexibility is affected by the binding of myosin and its subfragments. This rotational flexibility does not change during the active interaction of myosin heads, actin, and adenosine triphosphate. However, these ST-EPR studies, performed on randomly oriented actin, would not be sensitive to orientational changes on the millisecond time scale or slower. In the present study, we have clarified these results by performing conventional EPR experiments on MSL-actin oriented by flow to detect changes in the orientational distribution. We have determined the orientational distribution of the spin labels relative to the magnetic field (flow direction) by comparing experimental EPR spectra to simulated EPR spectra corresponding to known orientational distributions. Spectra acquired during flow indicate two populations of probes: a highly ordered population and a disordered population. For the ordered population (28% of the total spin concentration), the angle between the actin filament axis and the nitroxide z axis (theta) fits a Gaussian distribution centered at 32.0 +/- 0.9 degrees, with a full width at half maximum of 20.7 +/- 3.9 degrees. The angle between the nitroxide x axis and the projection of the field in the xy plane (phi) is centered at 37.5 +/- 9.2 degrees with a full width of 24.9 +/- 10.7 degrees. This orientational distribution is not significantly changed upon the binding of phalloidin or myosin subfragment 1 (S1), indicating that these proteins do not affect the axial orientation of actin subunits. Spectra of spin-labeled S1 (MSL-S1) bound to actin oriented by flow have about the same orientational distribution as MSL-S1 bound to actin in oriented fibers. Thus, the oriented fraction of flow-oriented actin filaments has nearly the same high degree of alignment as the actin filaments in muscle fibers.  相似文献   

12.
Di-tert-butylnitroxide dissolved in an aqueous suspension of egg yolk lecithin vesicles is distributed between the two phases. Partition coefficients of the nitroxide between the lipid and the water, calculated from the nitroxide electron paramagnetic resonance (EPR) spectra, decrease with decreasing temperature until approximately the freezing point of the solvent. Below this temperature the nitroxide is detected only in the lecithin. The rotational correlation times of the spin label present in the lecithin were calculated for the temperature range from +45 to ?60 °C. At low temperatures, the EPR spectra are characteristic of a superposition of two spectra resulting from the nitroxide dissolved in the lipid in two environments with different rotational correlation times.  相似文献   

13.
Comparative properties of lecithin-based liposomes prepared from the mixed phospholipids of sunflower seeds, soybean and egg yolk were investigated by electron paramagnetic resonance (EPR) spectroscopy. For these investigations, stable nitroxide radicals, 1-oxyl-2,2,6,6-tetramethylpiperidin-4-yl 5,7-dimethyladamantane-1-carboxylate (DMAC-TEMPO), 5-doxylstearic acid (5-DSA) and 16-doxylstearic acid (16-DSA) were used as spin probes. Binding of the spin probes to the liposome membranes resulted in a substantial increase of the apparent rotational diffusion correlation times. The EPR spectra of the incorporated nitroxides underwent temperature-dependent changes. For every spin probe, values of apparent enthalpy and entropy of activation were calculated from the temperature dependence of rotational diffusion correlation times via Arrhenius equation. In case of DMAC-TEMPO, the data point to differences between the phospholipid bilayer of liposomes derived from sunflower and soy lecithin, and some similarity between the sunflower and egg yolk liposomes. Anisotropic hyperfine interaction constants of DMAC-TEMPO and 16-DSA included in the liposomes have been analyzed and attributed to different micropolarity of the surroundings of the spin probes. The kinetics of EPR signal decay of DMAC-TEMPO in the presence of 2,2′-azobis(2-amidinopropane) suggest the better stability of the sunflower liposomes to lipid peroxidation as compared to the liposomes prepared from soy lecithin.  相似文献   

14.
The indanedione series of vinyl ketone spin-labelling reagents has been extended in two ways: by increasing the length of the rigid spacer between the reactive centre and the nitroxide ring, or by introducing an electrophilic substituent (that could also hinder its rotation) at the bridge head position of the nitroxide ring. Three reagents of this new series have been used to spin label the Class II thiol groups of membranous Na,K-ATPase from Squalus acanthias. With a conjugated diene spacer, the majority of spin labels are strongly held but a minor population is relatively mobile at 37 degrees C. With a conjugated triene spacer, the nitroxide is still strongly held but a portion of the label is non-covalently bound. The 4-bromo-pyrroline derivative (with short vinyl spacer) is tightly held at the attachment site, and the conventional electron paramagnetic resonance (EPR) spectra distinguish between the two enantiomeric structures which differ in their mobility at 37 degrees C. Saturation transfer EPR (ST-EPR) spectra of this label at 4 degrees C have been used to determine the dependence of the protein rotational mobility on ionic strength. Electrostatic repulsion contributes to the lateral interactions between Na,K-ATPase molecules.  相似文献   

15.
Steady-state and time-resolved fluorescence anisotropy measurements of eosin in solution and eosin-5-maleimide bound to purified myosin were made to study localized motions of the "head region" of this protein. The lifetime and apparent Debye rotational relaxation times of eosin in aqueous solution are essentially invariant with changes in excitation wavelength. In more viscous solvents, such as propylene glycol/water mixtures, the apparent Debye rotational relaxation times of eosin differ upon excitation in the regions of positive and negative anisotropy. Using eosin attached to the SH-1 thiol of the myosin head differing rotational modes of the bound probe were detected, dependent upon excitation wavelength. The main features of the anisotropy data for eosin-myosin are consistent with the existence of a 'crevice' or 'pocket' in the myosin head. A model is presented which allows estimation of the ratio of distinct rotational diffusion terms (selected by different excitation wavelengths) that produce both the observed steady-state anisotropy and differential phase results.  相似文献   

16.
The rotational motions of human fibrinogen in solution at 20 degrees C have been examined, in the 0.2-12-microseconds time range, by measuring the laser-induced dichroism of the triplet state of an erythrosin probe covalently bonded to the protein. The decay of the anisotropy was multiexponential, and up to three correlation times (phi 1 = 380 +/- 50 ns, phi 2 = 1.1 +/- 0.1 microseconds, and phi 3 = 3.3 +/- 0.6 microseconds) were needed to obtain a satisfactory analysis. The experimental data are consistent with the brownian motions of an elongated, rigid particle. If the correlation times are combined with previous data on the intrinsic viscosity of fibrinogen, the rotational and translational diffusive properties of the protein can be reproduced with high accuracy by idealizing it as an elongated ellipsoid of revolution with dimensions (2a x 2b) of (54 +/- 6) x (7.2 +/- 0.5) nm, having rotational diffusion constants of D parallel = (6.2 +/- 0.7) x 10(5) s-1 and D perpendicular = (5 +/- 1) x 10(4) s-1. The possibility of Ca(2+)-dependent changes in the rigidity or conformation of fibrinogen was excluded by examining the submicrosecond time-resolved fluorescence depolarization of 1-methylpyrene conjugates of the protein in the presence of different calcium concentrations. Although there are inherent difficulties to extrapolate the data on isolated fibrinogen molecules to the polymerizing species, this relatively stiff conformation meets the requirements of the classical half-staggered double-stranded model of fibrin polymerization rather better than those of the recently proposed interlocked single-stranded mechanism.  相似文献   

17.
D E Waskiewicz  G G Hammes 《Biochemistry》1982,21(25):6489-6496
The lipoic acids of the alpha-ketoglutarate dehydrogenase multienzyme complex from Escherichia coli have been modified with two fluorescent probes, N-(1-pyrenyl)-maleimide and 5-[[[(iodoacetyl)amino]ethyl]amino]-naphthylene-1-sulfonic acid. Time-resolved fluorescence polarization of partially labeled complexes (18-77% inhibition of enzyme activity) reveals a complex depolarization process: one component of the anisotropy is characterized by a rotational correlation time much longer than the time scale of the measurements (less than or equal to 400 ns), reflecting the overall rotation of the complex, while a second component of the anisotropy decays with a rotational correlation time of 320 (+/- 50) ns. This decay is essentially independent of viscosity and is consistent with a model in which the depolarization is due to the dissociation from and rotation of lipoic acids between binding sites on the multienzyme complex. The sum of the rate constants characterizing the association and dissociation with the binding sites is approximately 3 x 10(6) s-1. In addition, approximately 5% of the anisotropy of the N-(1-pyrenyl)maleimide-labeled complex decays with a rotational correlation time of 25 ns; this can be attributed to local motion of the probe. At high extents of N-(1-pyrenyl)maleimide labeling (90-95% inhibition of enzyme activity), the anisotropy decay can be described by a constant term plus a rotational correlation time of about 1 microseconds. The increase in the correlation time probably reflects interactions between pyrene moieties. The N-(1-pyrenyl)maleimide-labeled dihydrolipoyl transsuccinylase core of the multienzyme complex has been isolated, and the anisotropy is constant over the observed time range of 300 ns. This suggests that the native structure is necessary for observation of lipoic acid movement within the complex. Fluorescent-labeled limited trypsin digestion fragments of the alpha-ketoglutarate dehydrogenase complex also have been isolated, and anisotropy measurements reveal substantial mobility of the label within the fragments. The time-resolved anisotropy of FAD in the native complex and in the isolated dihydrolipoyl dehydrogenase indicates some rapid local mobility of the FAD (rotational correlation time of 12 ns) that is viscosity independent, as well as a component of the anisotropy that is constant over the 35-ns time scale of the experiments.  相似文献   

18.
Previously, we showed that intercellular uncoupling through gap junctions is an important mechanism for maintaining transmural heterogeneities of repolarization that are responsible for ventricular arrhythmias in disease states such as heart failure. However, rotational anisotropy between transmural muscle layers also may influence coupling. To determine the effect of rotational anisotropy on transmural coupling, we developed a numerical three-dimensional model of passive cardiac tissue in which rotational anisotropy was varied in a controlled fashion. Simulations of optical mapping demonstrated that spatial averaging produced a voltage decay in space best fit by a single decaying exponential compared with the theoretically predicted decay. As fiber orientation varied by 90 degrees with respect to the transmural surface, the effective transmural space constant (lambda(TM)) changed by only 0.31% in simulations. In contrast, reducing intercellular conductivity by 24% decreased lambda(TM) by 7.7%. In the canine wedge preparation (n = 5), lambda measured by optical mapping of the epicardial and subepicardial surface was similar transverse (lambda(TV) = 0.73 +/- 0.10 mm) and transmural (lambda(TM) = 0.70 +/- 0.08 mm) to subepicardial fibers. We confirmed previous findings that lambda(TM) in subepicardial layers was significantly reduced by 14 +/- 2% compared with deeper layers of myocardium, providing evidence for transmural uncoupling in the epicardial-midmyocardial interface. These data establish the theoretical and experimental basis for measuring intercellular coupling between muscle layers spanning the ventricular wall with optical mapping techniques. Furthermore, this study demonstrates that transmural uncoupling at the epicardial-midmyocardial interface may be attributable to heterogeneous expression of cardiac gap junctions and not rotational anisotropy.  相似文献   

19.
We have developed a saturation transfer EPR (ST-EPR) method to measure selectively the rotational dynamics of those lipids that are motionally restricted by integral membrane proteins and have applied this methodology to measure lipid-protein interactions in native sarcoplasmic reticulum (SR) membranes. This analysis involves the measurement of spectral saturation using a series of six stearic acid spin labels that are labeled with a nitroxide at different carbon atom positions. A large amount of spectral saturation is observed for spin labels in native SR membranes, but not for spin labels in dispersions of extracted SR lipids, implying that the motional properties of those lipids interacting with the Ca-ATPase, i.e., the boundary or annular lipid, can be directly measured without the need for spectral subtraction procedures. A comparison of the motional properties of the restricted lipid, measured by ST-EPR, with those measured by digital subtraction of conventional EPR spectra qualitatively agree, for in both cases the Ca-ATPase restricts the rotational mobility of a population of lipids, whose rotational mobility increases as the nitroxide is positioned toward the center of the bilayer. However, the ability of ST-EPR to directly measure the motionally restricted lipid in a model-independent means provides the greater precision necessary to measure small changes in the rotational dynamics of the lipid at the protein-lipid interface, providing a valuable tool in clarifying the relationship between the physical nature of the protein-lipid interface and membrane function.  相似文献   

20.
Fluorescence anisotropy has been widely used to study the dynamics and interactions of biomolecules in diluted solutions. Comparable studies on single tracer macromolecules at the cellular level are now feasible because of the recent development of non-invasive fluorescence markers, like the growing family of the green fluorescence proteins (GFPs), and the advances in time-resolved fluorescence microscopy instrumentation. The interpretation of fluorescence polarization data in terms of dynamics and biological function of the macromolecular complexes in these physiological environments requires a deep understanding of the tracer rotational diffusion in such complex media. In this work we have studied the rotational diffusion of a tracer protein, apomyoglobin labeled with 1-anilino-8-naphthalene sulfonate, in crowded solutions of an unrelated protein, ribonuclease A. We have evaluated the deviation of the different tracer rotational motions from the Stokes-Einstein-Debye diffusion behavior, and its relation to the properties of the transient molecular cavities where the tracer is rotating in the fluorescence lifetime window. Finally, we have analyzed the application of fluorescence polarization methods to determine the apparent equilibrium constants of homo and hetero-associations of macromolecules in crowded conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号