首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Coordination of skeletal muscle growth and metabolism with nutrient availability is critical for metabolic homeostasis. To establish the role of insulin-like signaling in this process, we used muscle creatine kinase (MCK)-Cre to disrupt expression of insulin receptor substrates Irs1 and Irs2 in mouse skeletal/cardiac muscle. In 2-week-old mice, skeletal muscle masses and insulin responses were slightly affected by Irs1, but not Irs2, deficiency. In contrast, the combined deficiency of Irs1 and Irs2 (MDKO mice) severely reduced skeletal muscle growth and Akt→mTOR signaling and caused death by 3 weeks of age. Autopsy of MDKO mice revealed dilated cardiomyopathy, reflecting the known requirement of insulin-like signaling for cardiac function (P. G. Laustsen et al., Mol. Cell. Biol. 27:1649-1664, 2007). Impaired growth and function of MDKO skeletal muscle were accompanied by increased Foxo-dependent atrogene expression and amino acid release. MDKO mice were resistant to injected insulin, and their isolated skeletal muscles showed decreased insulin-stimulated glucose uptake. Glucose utilization in MDKO mice and isolated skeletal muscles was shifted from oxidation to lactate production, accompanied by an elevated AMP/ATP ratio that increased AMP-activated protein kinase (AMPK)→acetyl coenzyme A carboxylase (ACC) phosphorylation and fatty acid oxidation. Thus, insulin-like signaling via Irs1/2 is essential to terminate skeletal muscle catabolic/fasting pathways in the presence of adequate nutrition.  相似文献   

10.
11.
12.
13.
14.
Irs2-mediated insulin/IGF1 signaling in the CNS modulates energy balance and glucose homeostasis; however, the site for Irs2 function is unknown. The hormone leptin mediates energy balance by acting on leptin receptor (LepR-b)-expressing neurons. To determine whether LepR-b neurons mediate the metabolic actions of Irs2 in the brain, we utilized Lepr(cre) together with Irs2(L/L) to ablate Irs2 expression in LepR-b neurons (Lepr(ΔIrs2)). Lepr(ΔIrs2) mice developed obesity, glucose intolerance, and insulin resistance. Leptin action was not altered in young Lepr(ΔIrs2) mice, although insulin-stimulated FoxO1 nuclear exclusion was reduced in Lepr(ΔIrs2) mice. Indeed, deletion of Foxo1 from LepR-b neurons in Lepr(ΔIrs2) mice normalized energy balance, glucose homeostasis, and arcuate nucleus gene expression. Thus, Irs2 signaling in LepR-b neurons plays a crucial role in metabolic sensing and regulation. While not required for leptin action, Irs2 suppresses FoxO1 signaling in LepR-b neurons to promote energy balance and metabolism.  相似文献   

15.
16.
17.
18.
Dehydrozingerone (DHZ) exerts beneficial effects on human health; however, its mechanism of action remains unclear. Here, we found that DHZ suppressed high‐fat diet‐induced weight gain, lipid accumulation and hyperglycaemia in C57BL/6 mice and increased AMP‐activated protein kinase (AMPK) phosphorylation and stimulated glucose uptake in C2C12 skeletal muscle cells. DHZ activated p38 mitogen‐activated protein kinase (MAPK) signalling in an AMPK‐dependent manner. Inhibiting AMPK or p38 MAPK blocked DHZ‐induced glucose uptake. DHZ increased GLUT4 (major transporter for glucose uptake) expression in skeletal muscle. Glucose clearance and insulin‐induced glucose uptake increased in DHZ‐fed animals, suggesting that DHZ increases systemic insulin sensitivity in vivo. Thus, the beneficial health effects of DHZ could possibly be explained by its ability to activate the AMPK pathway in skeletal muscle.  相似文献   

19.

Background

Hypothalamic AMPK acts as a cell energy sensor and can modulate food intake, glucose homeostasis, and fatty acid biosynthesis. Intrahypothalamic fatty acid injection is known to suppress liver glucose production, mainly by activation of hypothalamic ATP-sensitive potassium (K(ATP)) channels. Since all models employed seem to involve malonyl-CoA biosynthesis, we hypothesized that acetyl-CoA carboxylase can modulate the counter-regulatory response independent of nutrient availability.

Methodology/Principal Findings

In this study employing immunoblot, real-time PCR, ELISA, and biochemical measurements, we showed that reduction of the hypothalamic expression of acetyl-CoA carboxylase by antisense oligonucleotide after intraventricular injection increased food intake and NPY mRNA, and diminished the expression of CART, CRH, and TRH mRNA. Additionally, as in fasted rats, in antisense oligonucleotide-treated rats, serum glucagon and ketone bodies increased, while the levels of serum insulin and hepatic glycogen diminished. The reduction of hypothalamic acetyl-CoA carboxylase also increased PEPCK expression, AMPK phosphorylation, and glucose production in the liver. Interestingly, these effects were observed without modification of hypothalamic AMPK phosphorylation.

Conclusion/Significance

Hypothalamic ACC inhibition can activate hepatic counter-regulatory response independent of hypothalamic AMPK activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号