首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 34‐residue α/β peptide [IG(28–61)], derived from the C‐terminal part of the B3 domain of the immunoglobulin binding protein G from Streptoccocus, was studied using CD and NMR spectroscopy at various temperatures and by differential scanning calorimetry. It was found that the C‐terminal part (a 16‐residue‐long fragment) of this peptide, which corresponds to the sequence of the β‐hairpin in the native structure, forms structure similar to the β‐hairpin only at T = 313 K, and the structure is stabilized by non‐native long‐range hydrophobic interactions (Val47–Val59). On the other hand, the N‐terminal part of IG(28–61), which corresponds to the middle α‐helix in the native structure, is unstructured at low temperature (283 K) and forms an α‐helix‐like structure at 305 K, and only one helical turn is observed at 313 K. At all temperatures at which NMR experiments were performed (283, 305, and 313 K), we do not observe any long‐range connectivities which would have supported packing between the C‐terminal (β‐hairpin) and the N‐terminal (α‐helix) parts of the sequence. Such interactions are absent, in contrast to the folding pathway of the B domain of protein G, proposed recently by Kmiecik and Kolinski (Biophys J 2008, 94, 726–736), based on Monte‐Carlo dynamics studies. Alternative folding mechanisms are proposed and discussed. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 469–480, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

2.
Protein folding has been studied extensively for decades, yet our ability to predict how proteins reach their native state from a mechanistic perspective is still rudimentary at best, limiting our understanding of folding‐related processes in vivo and our ability to manipulate proteins in vitro. Here, we investigate the in vitro refolding mechanism of a large β‐helix protein, pertactin, which has an extended, elongated shape. At 55 kDa, this single domain, all‐β‐sheet protein allows detailed analysis of the formation of β‐sheet structure in larger proteins. Using a combination of fluorescence and far‐UV circular dichroism spectroscopy, we show that the pertactin β‐helix refolds remarkably slowly, with multiexponential kinetics. Surprisingly, despite the slow refolding rates, large size, and β‐sheet‐rich topology, pertactin refolding is reversible and not complicated by off‐pathway aggregation. The slow pertactin refolding rate is not limited by proline isomerization, and 30% of secondary structure formation occurs within the rate‐limiting step. Furthermore, site‐specific labeling experiments indicate that the β‐helix refolds in a multistep but concerted process involving the entire protein, rather than via initial formation of the stable core substructure observed in equilibrium titrations. Hence pertactin provides a valuable system for studying the refolding properties of larger, β‐sheet‐rich proteins, and raises intriguing questions regarding the prevention of aggregation during the prolonged population of partially folded, β‐sheet‐rich refolding intermediates. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
The β‐subunit of the human chorionic gonadotropin (hCG) hormone, which is believed to be related to certain types of cancer, contains three hairpin‐like fragments. To investigate the role of β‐hairpin formation in the early stages of the hCGβ folding, a 28‐residue peptide with the sequence RDVRFESIRLPGSPRGVNPVVSYAVALS, corresponding to the H3‐β hairpin fragment (residues 60–87) of the hCGβ subunit, was studied under various conditions using three optical spectroscopic methods: Fourier transform ir spectroscopy, electronic CD, and vibrational CD. Environmental conditions are critical factors for formation of secondary structure in this peptide. TFE : H2O mixed solvents induced helical formation. Formation of β‐structure in this peptide, which may be related to the native β‐hairpin formation in the intact hormone, was found to be induced only under conditions such as high concentration, high temperature, and the presence of nonmicellar sodium dodecyl sulfate concentrations. These findings support a protein folding mechanism for the hCGβ subunit in which an initial hydrophobic collapse, which increases intermolecular interactions in hCGβ, is needed to induce the H3‐β hairpin formation. © 1999 John Wiley & Sons, Inc. Biopoly 50: 413–423, 1999  相似文献   

4.
Examples of homomeric β‐helices and β‐barrels have recently emerged. Here we generalize the theory for the shear number in β‐barrels to encompass β‐helices and homomeric structures. We introduce the concept of the “β‐strip,” the set of parallel or antiparallel neighboring strands, from which the whole helix can be generated giving it n‐fold rotational symmetry. In this context, the shear number is interpreted as the sum around the helix of the fixed register shift between neighboring identical β‐strips. Using this approach, we have derived relationships between helical width, pitch, angle between strand direction and helical axis, mass per length, register shift, and number of strands. The validity and unifying power of the method is demonstrated with known structures including α‐hemolysin, T4 phage spike, cylindrin, and the HET‐s(218‐289) prion. From reported dimensions measured by X‐ray fiber diffraction on amyloid fibrils, the relationships can be used to predict the register shift and the number of strands within amyloid protofilaments. This was used to construct models of transthyretin and Alzheimer β(40) amyloid protofilaments that comprise a single strip of in‐register β‐strands folded into a “β‐strip helix.” Results suggest both stabilization of an individual β‐strip helix and growth by addition of further β‐strip helices can involve the same pair of sequence segments associating with β‐sheet hydrogen bonding at the same register shift. This process would be aided by a repeat sequence. Hence, understanding how the register shift (as the distance between repeat sequences) relates to helical dimensions will be useful for nanotube design.  相似文献   

5.
MPT63, a major secreted protein from Mycobacterium tuberculosis, has been shown to have immunogenic properties and has been implicated in virulence. MPT63 is a β‐sandwich protein containing 11 β strands and a very short stretch of 310 helix. The detailed experimental and computational study reported here investigates the equilibrium unfolding transition of MPT63. It is shown that in spite of being a complete β‐sheet protein, MPT63 has a strong propensity toward helix structures in its early intermediates. Far UV‐CD and FTIR spectra clearly suggest that the low‐pH intermediate of MTP63 has enhanced helical content, while fluorescence correlation spectroscopy suggests a significant contraction. Molecular dynamics simulation complements the experimental results indicating that the unfolded state of MPT63 traverses through intermediate forms with increased helical characteristics. It is found that this early intermediate contains exposed hydrophobic surface, and is aggregation prone. Although MPT63 is a complete β‐sheet protein in its native form, the present findings suggest that the secondary structure preferences of the local interactions in early folding pathway may not always follow the native conformation. Furthermore, the Gly25Ala mutant supports the proposed hypothesis by increasing the non‐native helical propensity of the protein structure.  相似文献   

6.
Secondary structural transitions from α‐helix to β‐sheet conformations are observed in several misfolding diseases including Alzheimer's and Parkinson's. Determining factors contributing favorably to the formation of each of these secondary structures is therefore essential to better understand these disease states. β‐hairpin peptides form basic components of anti‐parallel β‐sheets and are suitable model systems for characterizing the fundamental forces stabilizing β‐sheets in fibrillar structures. In this study, we explore the free energy landscape of the model β‐hairpin peptide GB1 and its E2 isoform that preferentially adopts α‐helical conformations at ambient conditions. Umbrella sampling simulations using all‐atom models and explicit solvent are performed over a large range of end‐to‐end distances. Our results show the strong preference of GB1 and the E2 isoform for β‐hairpin and α‐helical conformations, respectively, consistent with previous studies. We show that the unfolded states of GB1 are largely populated by misfolded β‐hairpin structures which differ from each other in the position of the β‐turn. We discuss the energetic factors contributing favorably to the formation of α‐helix and β‐hairpin conformations in these peptides and highlight the energetic role of hydrogen bonds and non‐bonded interactions. Proteins 2014; 82:2394–2402. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
In this work, we report the ab initio folding of three different extended helical peptides namely 2khk, N36, and C34 through conventional molecular dynamics simulation at room temperature using implicit solvation model. Employing adaptive hydrogen bond specific charge (AHBC) scheme to account for the polarization effect of hydrogen bonds established during the simulation, the effective folding of the three extended helices were observed with best backbone RMSDs in comparison to the experimental structures over the helical region determined to be 1.30 Å for 2khk, 0.73 Å for N36 and 0.72 Å for C34. In this study, 2khk will be used as a benchmark case serving as a means to compare the ability of polarized (AHBC) and nonpolarized force field in the folding of an extended helix. Analyses conducted revealed the ability of the AHBC scheme in effectively folding the extended helix by promoting helix growth through the stabilization of backbone hydrogen bonds upon formation during the folding process. Similar observations were also noted when AHBC scheme was employed during the folding of C34 and N36. However, under Amber03 force field, helical structures formed during the folding of 2khk was not accompanied by stabilization thus highlighting the importance of electrostatic polarization in the folding of helical structures. Proteins 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
B. licheniformis exo‐small β‐lactamase (ESBL) has a complex architecture with twelve α helices and a five‐stranded beta sheet. We replaced, separately or simultaneously, three of the ESBL α helices with prototype amphiphatic helices from a catalog of secondary structure elements. Although the substitutes bear no sequence similarity to the originals and pertain to unrelated protein families, all the engineered ESBL variants were found able to fold in native like structures with in vitro and in vivo enzymic activity. The triple substituted variant resembles a primitive protein, with folding defects such as a strong tendency to oligomerization and very low stability; however it mimics a non homologous recombinant abandoning the family sequence space while preserving fold. The results test protein folding and evolution theories.  相似文献   

9.
Im7 folds via an on‐pathway intermediate that contains three of the four native α‐helices. The missing helix, helix III, is the shortest and its failure to be formed until late in the pathway is related to frustration in the structure. Im7H3M3, a 94‐residue variant of the 87‐residue Im7 in which helix III is the longest of the four native helices, also folds via an intermediate. To investigate the structural basis for this we calculated the frustration in the structure of Im7H3M3 and used NMR to investigate its dynamics. We found that the native state of Im7H3M3 is highly frustrated and in equilibrium with an intermediate state that lacks helix III, similar to Im7. Model‐free analysis identified residues with chemical exchange contributions to their relaxation that aligned with the residues predicted to have highly frustrated interactions, also like Im7. Finally, we determined properties of urea‐denatured Im7H3M3 and identified four clusters of interacting residues that corresponded to the α‐helices of the native protein. In Im7 the cluster sizes were related to the lengths of the α‐helices with cluster III being the smallest but in Im7H3M3 cluster III was also the smallest, despite this region forming the longest helix in the native state. These results suggest that the conformational properties of the urea‐denatured states promote formation of a three‐helix intermediate in which the residues that form helix III remain non‐helical. Thus it appears that features of the native structure are formed early in folding linked to collapse of the unfolded state.  相似文献   

10.
The lipocalin β‐lactoglobulin (β‐LG) exists in different natural genetic variants—of which β‐LG A and B are predominant in bovine milk. At physiological conditions the protein dimerizes—building homodimers of β‐LG A and β‐LG B and heterodimers of β‐LG AB. Although β‐LG is one of the most intensely characterized lipocalins, the interaction behavior of ligands with hetero‐ and homodimers of β‐LG is largely unknown. The present findings revealed significant differences for hetero‐ and homodimers regarding ligand binding capacity as tested with a model ligand (i.e. surface binding (?)‐epigallocatechin gallate (EGCG)). These findings were confirmed using FT‐IR, where the addition of EGCG influenced the β‐sheet backbone of homodimer A and B with significantly higher intensity compared to heterodimer AB. Further, shape analysis by SAXS revealed oligomerization of both types of dimers upon addition of EGCG; however, homodimer A and B produced significantly larger aggregates compared to the heterodimer AB. In summary, the present study revealed that EGCG showed significantly different interaction reactivity (binding sites, aggregation size and conformational changes) to the hetero and homodimers of β‐LG in the order β‐LG A > B > AB. The results suggest that conformational differences between homodimers and heterodimers strongly influence the EGCG binding ability. This may also occur with other polyphenols and ligands of β‐LG and gives not only important information for β‐LG binding studies, but may also apply for polymorphisms of other self‐aggregating lipocalins. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
To test the hypothesis that the folding pathways of evolutionarily related proteins with similar three-dimensional structures but widely different sequences should be similar, the folding pathway of apoleghemoglobin has been characterized using stopped-flow circular dichroism, heteronuclear NMR pulse labeling techniques and mass spectrometry. The pathway of folding was found to differ significantly from that of a protein of the same family, apomyoglobin, although both proteins appear to fold through helical burst phase intermediates. For leghemoglobin, the burst phase intermediate exhibits stable helical structure in the G and H helices, together with a small region in the center of the E helix. The A and B helices are not stabilized until later stages of the folding process. The structure of the burst phase folding intermediate thus differs from that of apomyoglobin, in which stable helical structure is formed in the A, B, G and H helix regions.  相似文献   

12.
Helices are important structural/recognition elements in proteins and peptides. Stability and conformational differences between helices composed of α‐ and β‐amino acids as scaffolds for mimicry of helix recognition has become a theme in medicinal chemistry. Furthermore, helices formed by β‐amino acids are experimentally more stable than those formed by α‐amino acids. This is paradoxical because the larger sizes of the hydrogen‐bonding rings required by the extra methylene groups should lead to entropic destabilization. In this study, molecular dynamics simulations using the second‐generation force field, AMOEBA (Ponder, J.W., et al., Current status of the AMOEBA polarizable force field. J Phys Chem B, 2010. 114 (8): p. 2549–64.) explored the stability and hydrogen‐bonding patterns of capped oligo‐β‐alanine, oligoalanine, and oligoglycine dodecamers in water. The MD simulations showed that oligo‐β‐alanine has strong acceptor+2 hydrogen bonds, but surprisingly did not contain a large content of 312‐helical structures, possibly due to the sparse distribution of the 312‐helical structure and other structures with acceptor+2 hydrogen bonds. On the other hand, despite its backbone flexibility, the β‐alanine dodecamer had more stable and persistent <3.0 Å hydrogen bonds. Its structure was dominated more by multicentered hydrogen bonds than either oligoglycine or oligoalanine helices. The 31 (PII) helical structure, prevalent in oligoglycine and oligoalanine, does not appear to be stable in oligo‐β‐alanine indicating its competition with other structures (stacking structure as indicated by MD analyses). These differences are among the factors that shape helical structural preferences and the relative stabilities of these three oligopeptides. Proteins 2014; 82:3043–3061. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Systematic Monte Carlo simulations of simple lattice models show that the final stage of protein folding is an ordered process where native contacts get locked (i.e., the residues come into contact and remain in contact for the duration of the folding process) in a well‐defined order. The detailed study of the folding dynamics of protein‐like sequences designed as to exhibit different contact energy distributions, as well as different degrees of sequence optimization (i.e., participation of non‐native interactions in the folding process), reveals significant differences in the corresponding locking scenarios—the collection of native contacts and their average locking times, which are largely ascribable to the dynamics of non‐native contacts. Furthermore, strong evidence for a positive role played by non‐native contacts at an early folding stage was also found. Interestingly, for topologically simple target structures, a positive interplay between native and non‐native contacts is observed also toward the end of the folding process, suggesting that non‐native contacts may indeed affect the overall folding process. For target models exhibiting clear two‐state kinetics, the relation between the nucleation mechanism of folding and the locking scenario is investigated. Our results suggest that the stabilization of the folding transition state can be achieved through the establishment of a very small network of native contacts that are the first to lock during the folding process.  相似文献   

14.
Free‐standing single‐layer β‐sheets are extremely rare in naturally occurring proteins, even though β‐sheet motifs are ubiquitous. Here we report the crystal structures of three homologous, single‐layer, anti‐parallel β‐sheet proteins, comprised of three or four twisted β‐hairpin repeats. The structures reveal that, in addition to the hydrogen bond network characteristic of β‐sheets, additional hydrophobic interactions mediated by small clusters of residues adjacent to the turns likely play a significant role in the structural stability and compensate for the lack of a compact hydrophobic core. These structures enabled identification of a family of secreted proteins that are broadly distributed in bacteria from the human gut microbiome and are putatively involved in the metabolism of complex carbohydrates. A conserved surface patch, rich in solvent‐exposed tyrosine residues, was identified on the concave surface of the β‐sheet. These new modular single‐layer β‐sheet proteins may serve as a new model system for studying folding and design of β‐rich proteins.  相似文献   

15.
We have previously shown that monomeric globular αβ‐proteins can be designed de novo with considerable control over topology, size, and shape. In this paper, we investigate the design of cyclic homo‐oligomers from these starting points. We experimented with both keeping the original monomer backbones fixed during the cyclic docking and design process, and allowing the backbone of the monomer to conform to that of adjacent subunits in the homo‐oligomer. The latter flexible backbone protocol generated designs with shape complementarity approaching that of native homo‐oligomers, but experimental characterization showed that the fixed backbone designs were more stable and less aggregation prone. Designed C2 oligomers with β‐strand backbone interactions were structurally confirmed through x‐ray crystallography and small‐angle X‐ray scattering (SAXS). In contrast, C3‐C5 designed homo‐oligomers with primarily nonpolar residues at interfaces all formed a range of oligomeric states. Taken together, our results suggest that for homo‐oligomers formed from globular building blocks, improved structural specificity will be better achieved using monomers with increased shape complementarity and with more polar interfaces.  相似文献   

16.
The crystal structures of six different fibronectin Type III consensus‐derived Tencon domains, whose solution properties exhibit no, to various degrees of, aggregation according to SEC, have been determined. The structures of the five variants showing aggregation reveal 3D domain swapped dimers. In all five cases, the swapping involves the C‐terminal β‐strand resulting in the formation of Tencon dimers in which the target‐binding surface is blocked. All of the variants differ in sequence in the FG loop, which is the hinge loop in the β‐strand‐swapped dimers. The six tencon variants have between 0 and 5 residues inserted between positions 77 and 78 in the FG loop. Analysis of the structures suggests that a non‐glycine residue at position 77 and insertions of <4 residues may destabilize the β‐turn in the FG loop promoting β‐strand swapping. Swapped dimers with an odd number of inserted residues may be less stable, particularly if they contain proline residues, because they cannot form perfect β‐bridges in the FG regions that link the swapped dimers. The Tencon β‐swapped variants with the longest FG sequences are observed to form higher order hexameric or helical oligomeric structures in the crystal correlating well with the aggregation properties of these domains observed in solution. Understanding the structural basis for domain‐swapped dimerization and oligomerization will support engineering efforts of the Tencon domain to produce variants with desired biophysical properties. Proteins 2014; 82:1359–1369. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Many protein architectures exhibit evidence of internal rotational symmetry postulated to be the result of gene duplication/fusion events involving a primordial polypeptide motif. A common feature of such structures is a domain‐swapped arrangement at the interface of the N‐ and C‐termini motifs and postulated to provide cooperative interactions that promote folding and stability. De novo designed symmetric protein architectures have demonstrated an ability to accommodate circular permutation of the N‐ and C‐termini in the overall architecture; however, the folding requirement of the primordial motif is poorly understood, and tolerance to circular permutation is essentially unknown. The β‐trefoil protein fold is a threefold‐symmetric architecture where the repeating ~42‐mer “trefoil‐fold” motif assembles via a domain‐swapped arrangement. The trefoil‐fold structure in isolation exposes considerable hydrophobic area that is otherwise buried in the intact β‐trefoil trimeric assembly. The trefoil‐fold sequence is not predicted to adopt the trefoil‐fold architecture in ab initio folding studies; rather, the predicted fold is closely related to a compact “blade” motif from the β‐propeller architecture. Expression of a trefoil‐fold sequence and circular permutants shows that only the wild‐type N‐terminal motif definition yields an intact β‐trefoil trimeric assembly, while permutants yield monomers. The results elucidate the folding requirements of the primordial trefoil‐fold motif, and also suggest that this motif may sample a compact conformation that limits hydrophobic residue exposure, contains key trefoil‐fold structural features, but is more structurally homologous to a β‐propeller blade motif.  相似文献   

18.
Protein loops make up a large portion of the secondary structure in nature. But very little is known concerning loop closure dynamics and the effects of loop composition on fold stability. We have designed a small system with stable β‐sheet structures, including features that allow us to probe these questions. Using paired Trp residues that form aromatic clusters on folding, we are able to stabilize two β‐strands connected by varying loop lengths and composition (an example sequence: R W ITVTI – loop – KKIRV W E). Using NMR and CD, both fold stability and folding dynamics can be investigated for these systems. With the 16 residue loop peptide (sequence: R W ITVTI‐(GGGGKK)2GGGG‐KKIRV W E) remaining folded (ΔGU = 1.6 kJ/mol at 295K). To increase stability and extend the series to longer loops, we added an additional Trp/Trp pair in the loop flanking position. With this addition to the strands, the 16 residue loop (sequence: R W ITVRI W ‐(GGGGKK)2GGGG‐ W KTIRV W E) supports a remarkably stable β‐sheet (ΔGU = 6.3 kJ/mol at 295 K, Tm = ~55°C). Given the abundance of loops in binding motifs and between secondary structures, these constructs can be powerful tools for peptide chemists to study loop effects; with the Trp/Trp pair providing spectroscopic probes for assessing both stability and dynamics by NMR.  相似文献   

19.
Site-directed mutagenesis has been used to probe the interactions that stabilize the equilibrium and burst phase kinetic intermediates formed by apomyoglobin. Nine bulky hydrophobic residues in the A, E, G and H helices were replaced by alanine, and the effects on protein stability and kinetic folding pathways were determined. Hydrogen exchange pulse-labeling experiments, with NMR detection, were performed for all mutants. All of the alanine substitutions resulted in changes in proton occupancy or an increased rate of hydrogen-deuterium exchange for amides in the immediate vicinity of the mutation. In addition, most mutations affected residues in distant parts of the amino acid sequence, providing insights into the topology of the burst phase intermediate and the interactions that stabilize its structure. Differences between the pH 4 equilibrium molten globule and the kinetic intermediate are evident: the E helix region plays no discernible role in the equilibrium intermediate, but contributes significantly to stabilization of the ensemble of compact intermediates formed during kinetic refolding. Mutations that interfere with docking of the E helix onto the preformed A/B/G/H helix core substantially decrease the folding rate, indicating that docking and folding of the E helix region occurs prior to formation of the apomyoglobin folding transition state. The results of the mutagenesis experiments are consistent with rapid formation of an ensemble of compact burst phase intermediates with an overall native-like topological arrangement of the A, B, E, G, and H helices. However, the experiments also point to disorder in docking of the E helix and to non-native contacts in the kinetic intermediate. In particular, there is evidence for translocation of the H helix by approximately one helical turn towards its N terminus to maximize hydrophobic interactions with helix G. Thus, the burst phase intermediate observed during kinetic refolding of apomyoglobin consists of an ensemble of compact, kinetically trapped states in which the helix docking appears to be topologically correct, but in which there are local non-native interactions that must be resolved before the protein can fold to the native structure.  相似文献   

20.
β‐Lactoglobulin has been shown to interact with carotenoids from sea buckthorn berries. However, previously, no studies have taken into account the effect of calcium and magnesium on the β‐lactoglobulin–carotenoids complex. This study aims to determine the effect of calcium and magnesium on the interaction between β‐lactoglobulin and carotenoids from sea buckthorn berries extract, during heating from the perspective of deepening interaction mechanisms as prerequisites for micro‐ and nanoencapsulation. Phase diagram, intrinsic fluorescence spectra, quenching experiments and synchronous spectra were employed to acquire information regarding the conformation of protein in the presence of calcium chloride and magnesium chloride. Intrinsic fluorescence data showed that, between 25°C and 60°C, the presence of calcium chloride in the complex favoured the movement of tryptophan residues to domains located at the protein–water interface, while magnesium chloride favoured the burial of tryptophan residues. Higher temperatures generated blue shifts regardless of which salt was present, suggesting exposure of tryptophan residues to the hydrophobic core of the protein. Extrinsic fluorescence intensity of the non‐heat‐treated complex with magnesium chloride was significantly higher (P < 0.01) than of the complex with calcium chloride, suggesting that 1‐anilino‐8‐naphtalenesulphonic acid was bound to a higher proportion of the β‐lactoglobulin–carotenoids complex. Calcium chloride increased extrinsic fluorescence to a greater extent than magnesium chloride at temperatures above 70°C and was related to small structural changes induced by preheating β‐lactoglobulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号