首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Reinitiation supporting protein, RISP, interacts with 60S (60S ribosomal subunit) and eIF3 (eukaryotic initiation factor 3) in plants. TOR (target-of-rapamycin) mediates RISP phosphorylation at residue Ser267, favoring its binding to eL24 (60S ribosomal protein L24). In a viral context, RISP, when phosphorylated, binds the CaMV transactivator/ viroplasmin, TAV, to assist in an exceptional mechanism of reinitiation after long ORF translation. Moreover, we show here that RISP interacts with eIF2 via eIF2β and TOR downstream target 40S ribosomal protein eS6. A RISP phosphorylation knockout, RISP-S267A, binds preferentially eIF2β, and both form a ternary complex with eIF3a in vitro. Accordingly, transient overexpression in plant protoplasts of RISP-S267A, but not a RISP phosphorylation mimic, RISP-S267D, favors translation initiation. In contrast, RISP-S267D preferentially binds eS6, and, when bound to the C-terminus of eS6, can capture 60S in a highly specific manner in vitro, suggesting that it mediates 60S loading during reinitiation. Indeed, eS6-deficient plants are highly resistant to CaMV due to their reduced reinitiation capacity. Strikingly, an eS6 phosphomimic, when stably expressed in eS6-deficient plants, can fully restore the reinitiation deficiency of these plants in cellular and viral contexts. These results suggest that RISP function in translation (re)initiation is regulated by phosphorylation at Ser267.  相似文献   

2.
Park HS  Himmelbach A  Browning KS  Hohn T  Ryabova LA 《Cell》2001,106(6):723-733
The cauliflower mosaic virus transactivator, TAV, controls translation reinitiation of major open reading frames on polycistronic RNA. We show here that TAV function depends on its association with polysomes and eukaryotic initiation factor eIF3 in vitro and in vivo. TAV physically interacts with eIF3 and the 60S ribosomal subunit. Two proteins mediating these interactions were identified: eIF3g and 60S ribosomal protein L24. Transient expression of eIF3g and L24 in plant protoplasts strongly affects TAV-mediated reinitiation activity. We demonstrate that TAV/eIF3/40S and eIF3/TAV/60S ternary complexes form in vitro, and propose that TAV mediates efficient recruitment of eIF3 to polysomes, allowing translation of polycistronic mRNAs by reinitiation, overcoming the normal cell barriers to this process.  相似文献   

3.
The cauliflower mosaic virus reinitiation factor TAV interacts with host translation initiation factor 3 (eIF3) and the 60S ribosomal subunit to accomplish translation of polycistronic mRNAs. Interaction between TAV and eIF3g is critical for the reinitiation process. Here, we show that eIF4B can preclude formation of the TAV/eIF3 complex via competition with TAV for eIF3g binding; indeed, the eIF4B- and TAV-binding sites on eIF3g overlap. Our data indicate that eIF4B interferes with TAV/eIF3/40S ribosome complex formation during the first initiation event. Consequently, overexpression of TAV in plant protoplasts affects only second initiation events. Transient overexpression of eIF4B in plant protoplasts specifically inhibits TAV-mediated reinitiation of a second ORF. These data suggest that TAV enters the host translation machinery at the eIF4B removal step to stabilize eIF3 on the translating ribosome, thereby allowing translation of polycistronic viral RNA.  相似文献   

4.
The protein kinase TOR (target-of-rapamycin) upregulates translation initiation in eukaryotes, but initiation restart after long ORF translation is restricted by largely unknown pathways. The plant viral reinitiation factor transactivator-viroplasmin (TAV) exceptionally promotes reinitiation through a mechanism involving retention on 80S and reuse of eIF3 and the host factor reinitiation-supporting protein (RISP) to regenerate reinitiation-competent ribosomal complexes. Here, we show that TAV function in reinitiation depends on physical association with TOR, with TAV-TOR binding being critical for both translation reinitiation and viral fitness. Consistently, TOR-deficient plants are resistant to viral infection. TAV triggers TOR hyperactivation and S6K1 phosphorylation in planta. When activated, TOR binds polyribosomes concomitantly with polysomal accumulation of eIF3 and RISP--a novel and specific target of TOR/S6K1--in a TAV-dependent manner, with RISP being phosphorylated. TAV mutants defective in TOR binding fail to recruit TOR, thereby abolishing RISP phosphorylation in polysomes and reinitiation. Thus, activation of reinitiation after long ORF translation is more complex than previously appreciated, with TOR/S6K1 upregulation being the key event in the formation of reinitiation-competent ribosomal complexes.  相似文献   

5.
The iron–sulphur (Fe–S)‐containing RNase L inhibitor (Rli1) is involved in ribosomal subunit maturation, transport of both ribosomal subunits to the cytoplasm, and translation initiation through interaction with the eukaryotic initiation factor 3 (eIF3) complex. Here, we present a new function for Rli1 in translation termination. Through co‐immunoprecipitation experiments, we show that Rli1 interacts physically with the translation termination factors eukaryotic release factor 1 (eRF1)/Sup45 and eRF3/Sup35 in Saccharomyces cerevisiae. Genetic interactions were uncovered between a strain depleted for Rli1 and sup35‐21 or sup45‐2. Furthermore, we show that downregulation of RLI1 expression leads to defects in the recognition of a stop codon, as seen in mutants of other termination factors. By contrast, RLI1 overexpression partly suppresses the read‐through defects in sup45‐2. Interestingly, we find that although the Fe–S cluster is not required for the interaction of Rli1 with eRF1 or its other interacting partner, Hcr1, from the initiation complex eIF3, it is required for its activity in translation termination; an Fe–S cluster mutant of RLI1 cannot suppress the read‐through defects of sup45‐2.  相似文献   

6.
Adenovirus protein VIII appears to connect core with the inner surface of the adenovirus capsid. Because protein–protein interactions are central to virus replication, identification of proteins interacting with protein VIII may help in understanding their role in adenovirus infection. Our yeast 2‐hybrid assay indicated that protein VIII interacts with eukaryotic initiation factor 6 (eIF6). These findings were confirmed by Glutathione S‐transferase‐pull down assay, bimolecular fluorescent complementation assay, and coimmunoprecipitation assay in plasmid DNA transfected and bovine adenovirus‐3 (BAdV‐3) infected cells. The C‐terminus amino acids 147 to 174 of protein VIII and N‐terminus amino acids 44 to 97 of eIF6 are involved in these interactions. Polysome analysis demonstrated increased level of 60S ribosomal subunit and decreased level of 80S complex in protein VIII expressing cells or BAdV‐3 infected cells. Our results suggest that formation of functional 80S ribosome appears impaired in the presence of protein VIII at late times post infection. We speculate that this impaired ribosome assembly may be responsible for the inhibition of cellular mRNA translation observed late in adenovirus infected cells. Moreover, analysis of recombinant BAdV‐3 expressing mutant protein VIII (deletion of eIF6 interacting domain) suggests that interaction of protein VIII and eIF6 may help in preferential translation of adenovirus genes during late phase of adenovirus infection.  相似文献   

7.
We have shown previously that the translation of Melon necrotic spot virus (MNSV, family Tombusviridae, genus Carmovirus) RNAs is controlled by a 3′‐cap‐independent translation enhancer (CITE), which is genetically and functionally dependent on the eukaryotic translation initiation factor (eIF) 4E. Here, we describe structural and functional analyses of the MNSV‐Mα5 3′‐CITE and its translation initiation factor partner. We first mapped the minimal 3′‐CITE (Ma5TE) to a 45‐nucleotide sequence, which consists of a stem‐loop structure with two internal loops, similar to other I‐shaped 3′‐CITEs. UV crosslinking, followed by gel retardation assays, indicated that Ma5TE interacts in vitro with the complex formed by eIF4E + eIF4G980–1159 (eIF4Fp20), but not with each subunit alone or with eIF4E + eIF4G1003–1092, suggesting binding either through interaction with eIF4E following a conformational change induced by its binding to eIF4G980–1159, or through a double interaction with eIF4E and eIF4G980–1159. Critical residues for this interaction reside in an internal bulge of Ma5TE, so that their mutation abolished binding to eIF4E + eIF4G1003–1092 and cap‐independent translation. We also developed an in vivo system to test the effect of mutations in eIF4E in Ma5TE‐driven cap‐independent translation, showing that conserved amino acids in a positively charged RNA‐binding motif around amino acid position 228, implicated in eIF4E–eIF4G binding or belonging to the cap‐recognition pocket, are essential for cap‐independent translation controlled by Ma5TE, and thus for the multiplication of MNSV.  相似文献   

8.
9.
eIF3: a versatile scaffold for translation initiation complexes   总被引:1,自引:0,他引:1  
Translation initiation in eukaryotes depends on many eukaryotic initiation factors (eIFs) that stimulate both recruitment of the initiator tRNA, Met-tRNA(i)(Met), and mRNA to the 40S ribosomal subunit and subsequent scanning of the mRNA for the AUG start codon. The largest of these initiation factors, the eIF3 complex, organizes a web of interactions among several eIFs that assemble on the 40S subunit and participate in the different reactions involved in translation. Structural analysis suggests that eIF3 performs this scaffolding function by binding to the 40S subunit on its solvent-exposed surface rather than on its interface with the 60S subunit, where the decoding sites exist. This location of eIF3 seems ideally suited for its other proposed regulatory functions, including reinitiating translation on polycistronic mRNAs and acting as a receptor for protein kinases that control protein synthesis.  相似文献   

10.
Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The Saccharomyces cerevisiae gene that encodes the 245-amino-acid eIF6 (calculated Mr 25,550), designated TIF6, has been cloned and expressed in Escherichia coli. The purified recombinant protein prevents association between 40S and 60S ribosomal subunits to form 80S ribosomes. TIF6 is a single-copy gene that maps on chromosome XVI and is essential for cell growth. eIF6 expressed in yeast cells associates with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Depletion of eIF6 from yeast cells resulted in a decrease in the rate of protein synthesis, accumulation of half-mer polyribosomes, reduced levels of 60S ribosomal subunits resulting in the stoichiometric imbalance in the 40S/60S subunit ratio, and ultimately cessation of cell growth. Furthermore, lysates of yeast cells depleted of eIF6 remained active in translation of mRNAs in vitro. These results indicate that eIF6 does not act as a true translation initiation factor. Rather, the protein may be involved in the biogenesis and/or stability of 60S ribosomal subunits.  相似文献   

11.
The simultaneous interaction of poly(A)-binding protein (PABP) with eukaryotic translation initiation factor 4G (eIF4G) and the mRNA 3′ poly(A) tail promotes translation initiation. We previously showed that the interaction of PABP-interacting protein 1 (Paip1) with PABP and eukaryotic translation initiation factor 3 (eIF3; via the eIF3g subunit) further stimulates translation. Here, we demonstrate that the interaction of eIF3 with Paip1 is regulated by amino acids through the mTORC1 signaling pathway. The Paip1-eIF3 interaction is impaired by the mTORC1 inhibitors, rapamycin and PP242. We show that ribosomal protein S6 kinases 1 and 2 (S6K1/2) promote the interaction of eIF3 with Paip1. The enhancement of Paip1-eIF3 interaction by amino acids is abrogated by an S6K inhibitor or shRNA against S6K1/2. S6K1 interacts with eIF3f and, in vitro, phosphorylates eIF3. Finally, we show that S6K inhibition leads to a reduction in translation by Paip1. We propose that S6K1/2 phosphorylate eIF3 to stimulate Paip1-eIF3 interaction and consequent translation initiation. Taken together, these data demonstrate that eIF3 is a new translation target of the mTOR/S6K pathway.  相似文献   

12.
Eukaryotic ribosome biogenesis and translation are linked processes that limit the rate of cell growth. Although ribosome biogenesis and translation are mainly controlled by distinct factors, eukaryotic initiation factor 6 (eIF6) has been found to regulate both processes. eIF6 is a necessary protein with a unique anti‐association activity, which prevents the interaction of 40S ribosomal subunits with 60S subunits through its binding to 60S ribosomes. In the nucleolus, eIF6 is a component of the pre‐ribosomal particles and is required for the biogenesis of 60S subunits, whereas in the cytoplasm it mediates translation downstream from growth factors. The translational activity of eIF6 could be due to its anti‐association properties, which are regulated by post‐translational modifications; whether this anti‐association activity is required for the biogenesis and nuclear export of ribosomes is unknown. eIF6 is necessary for tissue‐specific growth and oncogene‐driven transformation, and could be a new rate‐limiting step for the initiation of translation.  相似文献   

13.
Ribosomal protein L3 is an evolutionarily conserved protein that participates in the assembly of early pre-60S particles. We report that the rpl3[W255C] allele, which affects the affinity and function of translation elongation factors, impairs cytoplasmic maturation of 20S pre-rRNA. This was not seen for other mutations in or depletion of L3 or other 60S ribosomal proteins. Surprisingly, pre-40S particles containing 20S pre-rRNA form translation-competent 80S ribosomes, and translation inhibition partially suppresses 20S pre-rRNA accumulation. The GTP-dependent translation initiation factor Fun12 (yeast eIF5B) shows similar in vivo binding to ribosomal particles from wild-type and rpl3[W255C] cells. However, the GTPase activity of eIF5B failed to stimulate processing of 20S pre-rRNA when assayed with ribosomal particles purified from rpl3[W255C] cells. We conclude that L3 plays an important role in the function of eIF5B in stimulating 3′ end processing of 18S rRNA in the context of 80S ribosomes that have not yet engaged in translation. These findings indicate that the correct conformation of the GTPase activation region is assessed in a quality control step during maturation of cytoplasmic pre-ribosomal particles.  相似文献   

14.
The eukaryotic mRNA 3′ poly(A) tail and the 5′ cap cooperate to synergistically enhance translation. This interaction is mediated by a ribonucleoprotein network that contains, at a minimum, the poly(A) binding protein (PABP), the cap-binding protein eIF4E, and a scaffolding protein, eIF4G. eIF4G, in turn, contains binding sites for eIF4A and eIF3, a 40S ribosome-associated initiation factor. The combined cooperative interactions within this “closed loop” mRNA among other effects enhance the affinity of eIF4E for the 5′ cap, by lowering its dissociation rate and, ultimately, facilitate the formation of 48S and 80S ribosome initiation complexes. The PABP-poly(A) interaction also stimulates initiation driven by picornavirus’ internal ribosomal entry sites (IRESs), a process that requires eIF4G but not eIF4E. PABP, therefore, should be considered a canonical initiation factor, integral to the formation of the initiation complex. Poly(A)-mediated translation is subjected to regulation by the PABP-interacting proteins Paip1 and Paip2. Paip1 acts as a translational enhancer. In contrast, Paip2 strongly inhibits translation by promoting dissociation of PABP from poly(A) and by competing with eIF4G for binding to PABP. Published in Russian in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 4, pp. 684–693. The article is published in the original.  相似文献   

15.
16.
Eukaryotic translation initiation factor eIF5B is a ribosome-dependent GTPase that mediates displacement of initiation factors from the 40S ribosomal subunit in 48S initiation complexes and joining of 40S and 60S subunits. Here, we determined eIF5B's position on 80S ribosomes by directed hydroxyl radical cleavage. In the resulting model, eIF5B is located in the intersubunit cleft of the 80S ribosome: domain 1 is positioned near the GTPase activating center of the 60S subunit, domain 2 interacts with the 40S subunit (helices 3, 5 and the base of helix 15 of 18S rRNA and ribosomal protein (rp) rpS23), domain 3 is sandwiched between subunits and directly contacts several ribosomal elements including Helix 95 of 28S rRNA and helix 44 of 18S rRNA, domain 4 is near the peptidyl-transferase center and its helical subdomain contacts rpL10E. The cleavage data also indicate that binding of eIF5B might induce conformational changes in both subunits, with ribosomal segments wrapping around the factor. Some of these changes could also occur upon binding of other translational GTPases, and may contribute to factor recognition.  相似文献   

17.
Enterovirus (EV) infection has been shown to cause a marked shutoff of host protein synthesis, an event mainly achieved through the cleavages of eukaryotic translation initiation factors eIF4GI and eIF4GII that are mediated by viral 2A protease (2Apro). Using fluorescence resonance energy transfer (FRET), we developed genetically encoded and FRET‐based biosensors to visualize and quantify the specific proteolytic process in intact cells. This was accomplished by stable expression of a fusion substrate construct composed of the green fluorescent protein 2 (GFP2) and red fluorescent protein 2 (DsRed2), with a cleavage motif on eIF4GI or eIF4GII connected in between. The FRET biosensor showed a real‐time and quantifiable impairment of FRET upon EV infection. Levels of the reduced FRET closely correlated with the cleavage kinetics of the endogenous eIF4Gs isoforms. The FRET impairments were solely attributed to 2Apro catalytic activity, irrespective of other viral‐encoded protease, the activated caspases or general inhibition of protein synthesis in the EV‐infected cells. The FRET biosensors appeared to be a universal platform for several related EVs. The spatiotemporal and quantitative imaging enabled by FRET can shed light on the protease–substrate behaviors in their normal milieu, permitting investigation into the molecular mechanism underlying virus‐induced host translation inhibition. Biotechnol. Bioeng. 2009; 104: 1142–1152. © 2009 Wiley Periodicals, Inc.  相似文献   

18.
The protein–protein interaction between VPg (viral protein genome‐linked) of potyviruses and eIF4E (eukaryotic initiation factor 4E) or eIF(iso)4E of their host plants is a critical step in determining viral virulence. In this study, we evaluated the approach of engineering broad‐spectrum resistance in Chinese cabbage (Brassica rapa) to Turnip mosaic virus (TuMV), which is one of the most important potyviruses, by a systematic knowledge‐based approach to interrupt the interaction between TuMV VPg and B. rapa eIF(iso)4E. The seven amino acids in the cap‐binding pocket of eIF(iso)4E were selected on the basis of other previous results and comparison of protein models of cap‐binding pockets, and mutated. Yeast two‐hybrid assay and co‐immunoprecipitation analysis demonstrated that W95L, K150L and W95L/K150E amino acid mutations of B. rapa eIF(iso)4E interrupted its interaction with TuMV VPg. All eIF(iso)4E mutants were able to complement an eIF4E‐knockout yeast strain, indicating that the mutated eIF(iso)4E proteins retained their function as a translational initiation factor. To determine whether these mutations could confer resistance, eIF(iso)4E W95L, W95L/K150E and eIF(iso)4E wild‐type were over‐expressed in a susceptible Chinese cabbage cultivar. Evaluation of the TuMV resistance of T1 and T2 transformants demonstrated that the over‐expression of the eIF(iso)4E mutant forms can confer resistance to multiple TuMV strains. These data demonstrate the utility of knowledge‐based approaches for the engineering of broad‐spectrum resistance in Chinese cabbage.  相似文献   

19.
Background information. The translational inhibitor protein 4E‐BP1 [eIF4E (eukaryotic initiation factor 4E)‐binding protein 1] regulates the availability of polypeptide chain initiation factor eIF4E for protein synthesis. Initiation factor eIF4E binds the 5′ cap structure present on all cellular mRNAs. Its ability to associate with initiation factors eIF4G and eIF4A, forming the eIF4F complex, brings the mRNA to the 43S complex during the initiation of translation. Binding of eIF4E to eIF4G is inhibited in a competitive manner by 4E‐BP1. Phosphorylation of 4E‐BP1 decreases the affinity of this protein for eIF4E, thus favouring the binding of eIF4G and enhancing translation. We have previously shown that induction or activation of the tumour suppressor protein p53 rapidly leads to 4E‐BP1 dephosphorylation, resulting in sequestration of eIF4E, decreased formation of the eIF4F complex and inhibition of protein synthesis. Results. We now report that activation of p53 also results in modification of 4E‐BP1 to a truncated form. Unlike full‐length 4E‐BP1, which is reversibly phosphorylated at multiple sites, the truncated protein is almost completely unphosphorylated. Moreover, the latter interacts with eIF4E in preference to full‐length 4E‐BP1. Inhibitor studies indicate that the p53‐induced cleavage of 4E‐BP1 is mediated by the proteasome and is blocked by conditions that inhibit the dephosphorylation of full‐length 4E‐BP1. Measurements of the turnover of 4E‐BP1 indicate that the truncated form is much more stable than the full‐length protein. Conclusions. The results suggest a model in which proteasome activity gives rise to a stable, hypophosphorylated and truncated form of 4E‐BP1, which may exert a long‐term inhibitory effect on the availability of eIF4E, thus contributing to the inhibition of protein synthesis and the growth‐inhibitory and pro‐apoptotic effects of p53.  相似文献   

20.
The hepatitis C viral mRNA initiates translation using an internal ribosome entry site (IRES) located in the 5' noncoding region of the viral genome. At physiological magnesium ion concentrations, the HCV IRES forms a binary complex with the 40S ribosomal subunit, recruits initiation factor eIF3 and the ternary eIF2/GTP/Met-tRNA(i)Met complex, and joins 60S subunits to assemble translation-competent 80S ribosomes. Here we show that in the presence of 5 mM MgCl2, the HCV IRES can initiate translation by an alternative mechanism that does not require known initiation factors. Specifically, the HCV IRES was shown to initiate translation in a reconstituted system consisting only of purified 40S and 60S subunits, elongation factors, and aminoacylated tRNAs at high magnesium concentration. Analyses of assembled complexes supported a mechanism by which preformed 80S ribosomes can assemble directly on the HCV IRES at high cation concentrations. This mechanism is reminiscent of that employed by the divergent IRES elements in the Dicistroviridae, exemplified by the cricket paralysis virus, which mediates initiation of protein synthesis without initiator tRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号