首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Using far and near-UV CD, ANS fluorescence and 2D NMR spectroscopy, an acid-induced partly folded state (A state) at extremely low pH for hUBF HMG Box1 was identified and characterized. As compared to the native state (N), the A state has similar secondary structure, less compact pack with larger amounts of exposed hydrophobic surface, and narrower chemical shift dispersion in (1)H-(15)N HSQC spectrum, which implies that it is a molten globule (MG)-like species. On the other hand, substantial tertiary contacts and cooperative thermal denaturing transition indicate that the A state is closer-relative to the classic MG-to the native folded state. In addition, when the solution pH is adjusted to neutrality, the protein in the A state refolds to the native state easily. All these data suggest that the A state of hUBF HMG Box1 could represent a potential folding intermediate on protein folding pathway.  相似文献   

3.
The fold of the murine Sox-5 (mSox-5) HMG box in free solution has been determined by multidimensional NMR using (15)N-labeled protein and has been found to adopt the characteristic twisted L-shape made up of two wings: the major wing comprising helix 1 (F10--F25) and helix 2 (N32--A43), the minor wing comprising helix 3 (P51--Y67) in weak antiparallel association with the N-terminal extended segment. (15)N relaxation measurements show considerable mobility (reduced order parameter, S(2)) in the minor wing that increases toward the amino and carboxy termini of the chain. The mobility of residues C-terminal to Q62 is significantly greater than the equivalent residues of non-sequence-specific boxes, and these residues show a weaker association with the extended N-terminal segment than in non-sequence boxes. Comparison with previously determined structures of HMG boxes both in free solution and complexed with DNA shows close similarity in the packing of the hydrophobic cores and the relative disposition of the three helices. Only in hSRY/DNA does the arrangement of aromatic sidechains differ significantly from that of mSox-5, and only in rHMG1 box 1 bound to cisplatinated DNA does helix 1 have no kink. Helix 3 in mSox-5 is terminated by P68, a conserved residue in DNA sequence-specific HMG boxes, which results in the chain turning through approximately 90 degrees.  相似文献   

4.
The amino acid Aib predisposes a peptide to be helical with context‐dependent preference for either 310‐ or α‐ or a mixed helical conformation. Short peptides also show an inherent tendency to be unfolded. To characterize helical and unfolded states adopted by water‐soluble Aib‐containing peptides, the conformational preference of Ac‐Ala‐Aib‐Ala‐Lys‐Ala‐Aib‐Lys‐Ala‐Lys‐Ala‐Aib‐Tyr‐NH2 was determined by CD, NMR and MD simulations as a function of temperature. Temperature‐dependent CD data indicated the contribution of two major components, each an admixture of helical and extended/polyproline II structures. Both right‐ and left‐handed helical conformations were detected from deconvolution of CD data and 13C NMR experiments. The presence of a helical backbone, more pronounced at the N‐terminal, and a temperature‐induced shift in α‐helix/310‐helix equilibrium, more pronounced at the C‐terminal, emerged from NMR data. Starting from polyproline II, the N‐terminal of the peptide folded into a helical backbone in MD simulations within 5 ns at 60°C. Longer simulations showed a mixed‐helical backbone to be stable over the entire peptide at 5°C while at 60°C the mixed‐helix was either stable at the N‐terminus or occurred in short stretches through out the peptide, along with a significant population of polyproline II. Our results point towards conformational heterogeneity of water‐soluble Aib‐based peptide helices and the associated subtleties. The problem of analyzing CD and NMR data of both left‐ and right‐handed helices are discussed, especially the validity of the ellipticity ratio [θ]222/[θ]207, as a reporter of α‐/310‐ population ratio, in right‐ and left‐handed helical mixtures. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

5.
Wang D  Zhang J  Jin X  Wu J  Shi Y 《Biochemistry》2007,46(5):1293-1302
HMG box 5 of human upstream binding factor (hUBF) consists of three alpha-helices arranged in an L-shape with a hydrophobic core embraced by these helices and stabilized by extensive hydrophobic interactions between nonpolar residues around the core. The GdmCl-induced equilibrium unfolding transition of HMG box 5 of hUBF was monitored by both circular dichroism (CD) and fluorescence spectra. A cooperative two-state unfolding process was observed. The unfolding free energy, DeltaGU(D2O), and the cooperativity of the unfolding reaction, m, are 4.6 +/- 0.16 kcal x mol-1 and 1.62 +/- 0.06 kcal x mol-1 x M-1, respectively. Native-state hydrogen exchange (NHX) experiments under EX2 conditions were performed. NHX results clearly show that the hydrophobic core among the three helices is a slow-exchange core. The three helices would not contribute equally to the stability of the native protein. Helix 3 appears to contribute the least to the stability. The NHX data have also allowed the local, subglobal, and global unfolding structures of hUBF HMG box 5 to be dissected, and common global and subglobal unfolding units were successfully detected.  相似文献   

6.
Under appropriate conditions, the four-helical Im7 (immunity protein 7) folds from an ensemble of unfolded conformers to a highly compact native state via an on-pathway intermediate. Here, we investigate the unfolded, intermediate, and native states populated during folding using diffusion single-pair fluorescence resonance energy transfer by measuring the efficiency of energy transfer (or proximity or P ratio) between pairs of fluorophores introduced into the side chains of cysteine residues placed in the center of helices 1 and 4, 1 and 3, or 2 and 4. We show that while the native states of each variant give rise to a single narrow distribution with high P values, the distributions of the intermediates trapped at equilibrium (denoted Ieqm) are fitted by two Gaussian distributions. Modulation of the folding conditions from those that stabilize the intermediate to those that destabilize the intermediate enabled the distribution of lower P value to be assigned to the population of the unfolded ensemble in equilibrium with the intermediate state. The reduced stability of the Ieqm variants allowed analysis of the effect of denaturant concentration on the compaction and breadth of the unfolded state ensemble to be quantified from 0 to 6 M urea. Significant compaction is observed as the concentration of urea is decreased in both the presence and absence of sodium sulfate, as previously reported for a variety of proteins. In the presence of Na2SO4 in 0 M urea, the P value of the unfolded state ensemble approaches that of the native state. Concurrent with compaction, the ensemble displays increased peak width of P values, possibly reflecting a reduction in the rate of conformational exchange among iso-energetic unfolded, but compact conformations. The results provide new insights into the initial stages of folding of Im7 and suggest that the unfolded state is highly conformationally constrained at the outset of folding.  相似文献   

7.
Im7 folds via an on‐pathway intermediate that contains three of the four native α‐helices. The missing helix, helix III, is the shortest and its failure to be formed until late in the pathway is related to frustration in the structure. Im7H3M3, a 94‐residue variant of the 87‐residue Im7 in which helix III is the longest of the four native helices, also folds via an intermediate. To investigate the structural basis for this we calculated the frustration in the structure of Im7H3M3 and used NMR to investigate its dynamics. We found that the native state of Im7H3M3 is highly frustrated and in equilibrium with an intermediate state that lacks helix III, similar to Im7. Model‐free analysis identified residues with chemical exchange contributions to their relaxation that aligned with the residues predicted to have highly frustrated interactions, also like Im7. Finally, we determined properties of urea‐denatured Im7H3M3 and identified four clusters of interacting residues that corresponded to the α‐helices of the native protein. In Im7 the cluster sizes were related to the lengths of the α‐helices with cluster III being the smallest but in Im7H3M3 cluster III was also the smallest, despite this region forming the longest helix in the native state. These results suggest that the conformational properties of the urea‐denatured states promote formation of a three‐helix intermediate in which the residues that form helix III remain non‐helical. Thus it appears that features of the native structure are formed early in folding linked to collapse of the unfolded state.  相似文献   

8.
Histatin‐5 (Hst‐5, DSHAKRHHGYKRKFHEKHHSHRGY) is a member of a histidine‐rich peptide family secreted by major salivary glands, exhibiting high fungicidal activity against Candida albicans. In the present work, we demonstrate the 3D structure of the head‐to‐tail cyclic variant of Hst‐5 in TFE solution determined using NMR spectroscopy and molecular dynamics simulations. The cyclic histatin‐5 reveals a helix‐loop‐helix motif with α‐helices at positions Ala4‐His7 and Lys11‐Ser20. Both helical segments are arranged relative to each other at an angle of ca. 142°. The head‐to‐tail cyclization increases amphipathicity of the peptide, this, however, does not affect its antimicrobial potency. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
The unfolded ensemble in aqueous solution represents the starting point of protein folding. Characterisation of this species is often difficult since the native state is usually predominantly populated at equilibrium. Previous work has shown that the four-helix protein, Im7 (immunity protein 7), folds via an on-pathway intermediate. While the transition states and folding intermediate have been characterised in atomistic detail, knowledge of the unfolded ensemble under the same ambient conditions remained sparse. Here, we introduce destabilising amino acid substitutions into the sequence of Im7, such that the unfolded state becomes predominantly populated at equilibrium in the absence of denaturant. Using far- and near-UV CD, fluorescence, urea titration and heteronuclear NMR experiments, we show that three amino acid substitutions (L18A–L19A–L37A) are sufficient to prevent Im7 folding, such that the unfolded state is predominantly populated at equilibrium. Using measurement of chemical shifts, 15N transverse relaxation rates and sedimentation coefficients, we show that the unfolded species of L18A–L19A–L37A deviates significantly from random-coil behaviour. Specifically, we demonstrate that this unfolded species is compact (Rh = 25 Å) relative to the urea-denatured state (Rh  30 Å) and contains local clusters of hydrophobic residues in regions that correspond to the four helices in the native state. Despite these interactions, there is no evidence for long-range stabilising tertiary interactions or persistent helical structure. The results reveal an unfolded ensemble that is conformationally restricted in regions of the polypeptide chain that ultimately form helices I, II and IV in the native state.  相似文献   

10.
Brevinin‐1BYa (FLPILASLAAKFGPKLFCLVTKKC), first isolated from skin secretions of the foothill yellow‐legged frog Rana boylii, shows broad‐spectrum activity, being particularly effective against opportunistic yeast pathogens. The structure of brevinin‐1BYa was investigated in various solution and membrane‐mimicking environments by proton nuclear magnetic resonance (1H‐NMR) spectroscopy and molecular modelling. The peptide does not possess a secondary structure in aqueous solution. In a 33% 2,2,2‐trifluoroethanol (TFE‐d3)‐H2O solvent mixture, as well as in membrane‐mimicking sodium dodecyl sulfate and dodecylphosphocholine micelles, the peptide's structure is characterised by a flexible helix‐hinge‐helix motif, with the hinge located at the Gly13/Pro14 residues, and the two α‐helices extending from Pro3 to Phe12 and from Pro14 to Thr21. Positional studies involving the peptide in sodium dodecyl sulfate and dodecylphosphocholine micelles using 5‐doxyl‐labelled stearic acid and manganese chloride paramagnetic probes show that the peptide's helical segments lie parallel to the micellar surface, with the residues on the hydrophobic face of the amphipathic helices facing towards the micelle core and the hydrophilic residues pointing outwards, suggesting that the peptide exerts its biological activity by a non–pore‐forming mechanism.  相似文献   

11.
12.
Refolding of a thermally unfolded disulfide‐deficient mutant of the starch‐binding domain of glucoamylase was investigated using differential scanning calorimetry, isothermal titration calorimetry, CD, and 1H NMR. When the protein solution was rapidly cooled from a higher temperature, a kinetic intermediate was formed during refolding. The intermediate was unexpectedly stable compared with typical folding intermediates that have short half‐lives. It was shown that this intermediate contained substantial secondary structure and tertiary packing and had the same binding ability with β‐cyclodextrin as the native state, suggesting that the intermediate is highly‐ordered and native‐like on the whole. These characteristics differ from those of partially folded intermediates such as molten globule states. Far‐UV CD spectra showed that the secondary structure was once disrupted during the transition from the intermediate to the native state. These results suggest that the intermediate could be an off‐pathway type, possibly a misfolded state, that has to undergo unfolding on its way to the native state.  相似文献   

13.
The conformational preferences of helix foldamers having different sizes of the H‐bonded pseudocycles have been studied for di‐ to octa‐γ2,3‐peptides based on 2‐(aminomethyl)cyclohexanecarboxylic acid (γAmc6) with a cyclohexyl constraint on the Cα–Cβ bond using density functional methods. The helical structures of the γAmc6 oligopeptides with homochiral configurations are known to be much stable than those with heterochiral configurations in the gas phase and in solution (chloroform and water). In particular, it is found that the (P/M)?2.514‐helices are most preferred in the gas phase and in chloroform, whereas the (P/M)?2.312‐helices become most populated in water due to the larger helix dipole moments. As the peptide sequence becomes longer, the helix propensities of 14‐ and 12‐helices are found to increase both in the gas phase and in solution. The γAmc6 peptides longer than octapeptide are expected to exist as a mixture of 12‐ and 14‐helices with the similar populations in water. The mean backbone torsion angles and helical parameters of the 14‐helix foldamers of γAmc6 oligopeptides are quite similar to those of 2‐aminocyclohexylacetic acid oligopeptides and γ2,3,4‐aminobutyric acid tetrapeptide in the solid state, despite the different substituents on the backbone. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 87–95, 2014.  相似文献   

14.
MPT63, a major secreted protein from Mycobacterium tuberculosis, has been shown to have immunogenic properties and has been implicated in virulence. MPT63 is a β‐sandwich protein containing 11 β strands and a very short stretch of 310 helix. The detailed experimental and computational study reported here investigates the equilibrium unfolding transition of MPT63. It is shown that in spite of being a complete β‐sheet protein, MPT63 has a strong propensity toward helix structures in its early intermediates. Far UV‐CD and FTIR spectra clearly suggest that the low‐pH intermediate of MTP63 has enhanced helical content, while fluorescence correlation spectroscopy suggests a significant contraction. Molecular dynamics simulation complements the experimental results indicating that the unfolded state of MPT63 traverses through intermediate forms with increased helical characteristics. It is found that this early intermediate contains exposed hydrophobic surface, and is aggregation prone. Although MPT63 is a complete β‐sheet protein in its native form, the present findings suggest that the secondary structure preferences of the local interactions in early folding pathway may not always follow the native conformation. Furthermore, the Gly25Ala mutant supports the proposed hypothesis by increasing the non‐native helical propensity of the protein structure.  相似文献   

15.
Chengcheng Hu  Patrice Koehl 《Proteins》2010,78(7):1736-1747
The three‐dimensional structure of a protein is organized around the packing of its secondary structure elements. Although much is known about the packing geometry observed between α‐helices and between β‐sheets, there has been little progress on characterizing helix–sheet interactions. We present an analysis of the conformation of αβ2 motifs in proteins, corresponding to all occurrences of helices in contact with two strands that are hydrogen bonded. The geometry of the αβ2 motif is characterized by the azimuthal angle θ between the helix axis and an average vector representing the two strands, the elevation angle ψ between the helix axis and the plane containing the two strands, and the distance D between the helix and the strands. We observe that the helix tends to align to the two strands, with a preference for an antiparallel orientation if the two strands are parallel; this preference is diminished for other topologies of the β‐sheet. Side‐chain packing at the interface between the helix and the strands is mostly hydrophobic, with a preference for aliphatic amino acids in the strand and aromatic amino acids in the helix. From the knowledge of the geometry and amino acid propensities of αβ2 motifs in proteins, we have derived different statistical potentials that are shown to be efficient in picking native‐like conformations among a set of non‐native conformations in well‐known decoy datasets. The information on the geometry of αβ2 motifs as well as the related statistical potentials have applications in the field of protein structure prediction. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
17.
The nature of flexibility in the helix‐turn‐helix region of E. coli trp aporepressor has been unexplained for many years. The original ensemble of nuclear magnetic resonance (NMR structures showed apparent disorder, but chemical shift and relaxation measurements indicated a helical region. Nuclear Overhauser effect (NOE) data for a temperature‐sensitive mutant showed more helical character in its helix‐turn‐helix region, but nevertheless also led to an apparently disordered ensemble. However, conventional NMR structure determination methods require all structures in the ensemble to be consistent with every NOE simultaneously. This work uses an alternative approach in which some structures of the ensemble are allowed to violate some NOEs to permit modeling of multiple conformational states that are in dynamic equilibrium. Newly measured NOE data for wild‐type aporepressor are used as time‐averaged distance restraints in molecular dynamics simulations to generate an ensemble of helical conformations that is more consistent with the observed NMR data than the apparent disorder in the previously reported NMR structures. The results indicate the presence of alternating helical conformations that provide a better explanation for the flexibility of the helix‐turn‐helix region of trp aporepressor. Structures representing these conformations have been deposited with PDB ID: 5TM0. Proteins 2017; 85:731–740. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
An analogue of the human granulocyte–macrophage colony‐stimulating factor (hGM‐CSF), hGM‐CSF(13–27)–Gly–(75–87) was synthesized by solid phase methodology. This analogue was designed to comprise helices A and C of the native growth factor, linked by a glycine bridge. Helices A and C form half of a four‐helix bundle motif in the crystal structure of the native factor and are involved in the interaction with α‐ and β‐chains of the heterodimeric receptor. A conformational analysis of the synthetic analogue by CD, two‐dimensional nmr spectroscopy, and molecular dynamics calculations is reported. The analogue is in a random structure in water and assumes a partially α‐helical conformation in a 1 : 1 trifluoroethanol/water mixture. The helix content in this medium is ∼ 70%. By 2D‐nmr spectroscopy, two helical segments were identified in the sequences corresponding to helices A and C. In addition to medium‐ and short‐range NOESY connectivities, a long‐range cross peak was found between the Cβ proton of Val16 and NH proton of His87 (using the numbering of the native protein). Experimentally derived interproton distances were used as restraints in molecular dynamics calculations, utilizing the x‐ray coordinates as the initial structure. The final structure is characterized by two helical segments in close spatial proximity, connected by a loop region. This structure is similar to that of the corresponding domain in the x‐ray structure of the native growth factor in which helices A and C are oriented in an antiparallel fashion. The N‐terminal residues Gly–Pro of helix C are involved in an irregular turn connecting the two helical segments. As a consequence, helix C is appreciably shifted and slightly rotated with respect to helix A compared to the x‐ray structure of the native growth factor. These small differences in the topology of the two helices could explain the lower biological activity of this analogue with respect to that of the native growth factor. © 1999 John Wiley & Sons, Inc. Biopoly 50: 545–554, 1999  相似文献   

19.
To establish the basis of sequence-specific DNA recognition by HMG boxes we separately transferred the minor and major wings from the sequence-specific HMG box of TCF1 alpha into their equivalent position in the non-sequence-specific box 2 of HMG1. Thus chimera THT1 contains the minor wing (of 11 N-terminal and 25 C-terminal residues) from the HMG box of TCF1 alpha and the major wing (the 45 residue central section) from HMG1 box 2, whilst the situation is reversed in chimera HTH1. The structural integrity of the two chimeric proteins was established by CD, NMR and their binding to four-way junction DNA. Gel retardation and circular permutation assays showed that only chimera THT1, containing the TCF1 alpha minor wing, formed a sequence-specific complex and bent the DNA. The bend angle was estimated to be 59 degrees for chimera THT1 and 52 degrees for the HMG box of TCF1 alpha. Our results, in combination with mutagenesis and other data, suggests a model for the DNA binding of HMG boxes in which the N-terminal residues and part of helix 1 contact the minor groove on the outside of a bent DNA duplex.  相似文献   

20.
Mainly present in the mitochondria, the translocator protein, TSPO, previously known as the peripheral benzodiazepine receptor, is a small essential membrane protein, involved in the translocation of cholesterol across mitochondrial membranes, a rate determining step in steroids biosynthesis. We previously reported the structure of five fragments encompassing the five putative transmembrane helices and showed that each of these fragments constitutes an autonomous folding unit. To further characterize the structural determinants responsible for helix–helix association of this membrane protein, we now investigate the folding of double transmembrane domains in various detergent micelles. Herein, we present the successful biosynthesis of a double transmembrane domain encompassing the last two C‐terminal helices (TM4TM5). For optimal production of this domain in Escherichia coli, the evaluation of various peptide constructs, including TM4TM5 fused to different purification tags or to solubilizing proteins, was necessary. The protocol of production of TM4TM5 with more than 95% purity is reported. This domain was further characterized using circular dichroism and solution state NMR. Far‐UV circular dichroism studies indicate that the secondary structure of TM4TM5 is highly helical when solubilized in various detergent micelles including n‐dodecyl‐β‐d ‐maltoside, n‐octyl‐β‐d ‐glucoside, n‐dodecylphosphocholine, 1,2‐dihexanoyl‐sn‐glycero‐3‐phosphocholine (DHPC), and 1‐palmitoyl‐2‐hydroxy‐sn‐glycero‐3‐phospho‐(1′‐rac‐glycerol). In addition, the solubilization conditions of the domain were optimized for NMR experiments, and preliminary analysis indicates that TM4TM5 adopts a stable tertiary fold within the TM4TM5‐DHPC complex. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号