首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ileal bile acid-binding protein (I-BABP) is a 14 kDa cytosolic protein which binds bile acids with a high affinity. It is thought to be implicated in the enterohepatic circulation of bile acids and, hence, in cholesterol homeostasis. Using a combination of in vivo and in vitro experiments, we have recently shown that I-BABP gene expression can be indirectly up-regulated by cholesterol through the activation of sterol-responsive element-binding protein 1c (SREBP1c) by liver X-receptor (LXR). We report here that I-BABP can be also a direct target for LXR. I-BABP regulation by LXR is maintained when the SREBP binding site is deleted in the I-BABP promoter and occurs, in the absence of conventional LXRE sequences, through an IR1 sequence previously identified as a farnesoid X-receptor-responsive element (FXRE). Electrophoretic mobility shift assays demonstrated that the LXR/RXR heterodimer specifically recognizes the FXRE. Collectively, these data strongly suggest that LXR can regulate the I-BABP gene by both direct and indirect mechanisms.  相似文献   

2.
3.
4.
Cholesterol 7α-hydroxylase (cyp7a) mediates cholesterol elimination in the liver by catalyzing the first and rate-limiting step in the conversion of cholesterol into bile acids. Peroxisome proliferator-activated receptor α (PPARα; NR1C1) and liver X receptor α (LXRα; NR1H3) are two nuclear receptors that stimulate the murine Cyp7a1 gene. Here we report that co-expression of PPARα and LXRα in hepatoma cells abolishes the stimulation of Cyp7a1 gene promoter in response to their respective agonists. PPARα and LXRα form an atypical heterodimer that binds to two directly adjacent hexameric sequences localized within overlapping PPARα and LXRα response elements (termed Site I), antagonizing the interaction of PPARα:retinoid X receptor α (RXRα) or RXRα:LXRα with the Cyp7a1 gene promoter. Mutations within either hexameric sequences that specifically abolished LXRα:PPARα heterodimer binding to the murine Cyp7a1 Site I also relieved promoter inhibition. The LXRα:PPARα heterodimer may be important in coordinating the expression of genes that encode proteins involved in metabolism of fats and cholesterol.  相似文献   

5.
Ileal bile acid-binding protein (I-BABP) is a soluble bile acids (BA) carrier protein which belongs to the fatty acid-binding protein (FABP) family. In the gut, its expression is strictly restricted to the ileum, where it is thought to be involved in the active BA reabsorption. Therefore, I-BABP gene expression levels might be rate limiting for the BA enterohepatic circulation, and hence, might be crucial for cholesterol (CS) homeostasis. Indeed, BA not reclaimed by intestinal absorption constitute the main way to eliminate a CS excess. However, such a function is not yet established. Because generally rate limiting genes are tightly controlled, we have undertaken the study of the I-BABP gene regulation. It was found that both BA and CS, probably via oxysterols, are able to up-regulate the trancription rate of I-BABP gene. The fact that intracellular sterol sensors (FXR, LXR and SREBP1c) are involved in the control of I-BABP gene expression strongly suggest a crucial role for I-BABP in the ileum.  相似文献   

6.
7.
8.
9.
10.
A method of assaying hepatic cytochrome P-450, oxysterol 7α-hydroxylase (CYP7B), was developed by combining the use of 25-[26,27-3H]hydroxycholesterol as a substrate and hydroxypropyl-β-cyclodextrin as a substrate vehicle. When these assay conditions were tested, an undesirable transformation was observed of the reaction product, 7α,25-dihydroxycholesterol, into 3-oxo-7α,25-dihydroxy-4-cholesten by the activity of 3β-hydroxy-Δ5-C27 steroid oxydoreductase, a microsomal NAD+ and NADP+ dependent enzyme of bile acid metabolism. A great improvement was reached by using a continuous NADPH generating system which constantly re-transforms NADP+ into NADPH, thus inhibiting this activity. This improved CYP7B assay, comparable to our previously described assay for cholesterol 7α-hydroxylase (CYP7A), allowed a 3-fold increase of the apparent enzyme activity. The possibility to simultaneously measure CYP7A and CYP7B activities on the same microsomal preparation was investigated. A marked decrease (?33%) in the CYP7B activity was noticed, while that of CYP7A remained unchanged. The CYP7B activity was observed to be inhibited by cholesterol (?30%) and also by the oxysterols 7α-hydroxycholesterol (?21%), 7β-hydroxycholesterol (?25%) and epicoprostanol (?20%), and by cyclosporin A (?26%). It can be concluded that this sensible and easy to perform CYP7B assay allows to observe, at least in vitro, a modulation of the enzyme activity by oxysterols.  相似文献   

11.
12.
Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor that regulates fatty acid transport and metabolism. Previous studies revealed that PPARα can affect bile acid metabolism; however, the mechanism by which PPARα regulates bile acid homeostasis is not understood. In this study, an ultraperformance liquid chromatography coupled with electrospray ionization qua dru pole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS)-based metabolomics approach was used to profile metabolites in urine, serum, and bile of wild-type and Ppara-null mice following cholic acid (CA) dietary challenge. Metabolomic analysis showed that the levels of several serum bile acids, such as CA (25-fold) and taurocholic acid (16-fold), were significantly increased in CA-treated Ppara-null mice compared with CA-treated wild-type mice. Phospholipid homeostasis, as revealed by decreased serum lysophos phati dylcholine (LPC) 16:0 (1.6-fold) and LPC 18:0 (1.6-fold), and corticosterone metabolism noted by increased urinary excretion of 11β-hydroxy-3,20-dioxopregn-4-en-21-oic acid (20-fold) and 11β,20α-dihydroxy-3-oxo-pregn-4-en-21-oic acid (3.6-fold), were disrupted in CA-treated Ppara-null mice. The hepatic levels of mRNA encoding transporters Abcb11, Abcb4, Abca1, Abcg5, and Abcg8 were diminished in Ppara-null mice, leading to the accumulation of bile acids in the liver during the CA challenge. These observations revealed that PPARα is an essential regulator of bile acid biosynthesis, transport, and secretion.  相似文献   

13.
14.
15.
16.
As previously reported by us, mice with targeted disruption of the CYP8B1 gene (CYP8B1-/-) fail to produce cholic acid (CA), upregulate their bile acid synthesis, reduce the absorption of dietary cholesterol and, after cholesterol feeding, accumulate less liver cholesterol than wild-type (CYP8B1+/+) mice. In the present study, cholesterol-enriched diet (0.5%) or administration of a synthetic liver X receptor (LXR) agonist strongly upregulated CYP7A1 expression in CYP8B1-/- mice, compared to CYP8B1+/+ mice. Cholesterol-fed CYP8B1-/- mice also showed a significant rise in HDL cholesterol and increased levels of liver ABCA1 mRNA. A combined CA (0.25%)/cholesterol (0.5%) diet enhanced absorption of intestinal cholesterol in both groups of mice, increased their liver cholesterol content, and reduced their expression of CYP7A1 mRNA. The ABCG5/G8 liver mRNA was increased in both groups of mice, but cholesterol crystals were only observed in bile from the CYP8B1+/+ mice. The results demonstrate the cholesterol-sparing effects of CA: enhanced absorption and reduced conversion into bile acids. Farnesoid X receptor (FXR)-mediated suppression of CYP7A1 in mice seems to be a predominant mechanism for regulation of bile acid synthesis under normal conditions and, as confirmed, able to override LXR-mediated mechanisms. Interaction between FXR- and LXR-mediated stimuli might also regulate expression of liver ABCG5/G8.  相似文献   

17.
Genes involved in carnitine uptake and synthesis, such as organic cation transporter-2 (OCTN2) and γ-butyrobetaine dioxygenase (BBD), have been shown to be regulated by peroxisome proliferator-activated receptor (PPAR)α directly. Whether other genes encoding enzymes involved in the carnitine synthesis pathway, such as 4-N-trimethylaminobutyraldehyde dehydrogenase (TMABA-DH) and trimethyllysine dioxygenase (TMLD), are also direct PPARα target genes is less clear. In silico-analysis of the mouse TMLD promoter and first intron and the TMABA-DH promoter revealed several putative peroxisome proliferator response elements (PPRE) with high similarity to the consensus PPRE. Luciferase reporter gene assays using either a 2kb TMLD promoter or a 4kb TMLD first intron reporter constructs revealed no functional PPRE. In contrast, reporter gene assays using wild-type and mutated 5′-truncation TMABA-DH promoter reporter constructs showed that one PPRE located at position -132 in the proximal promoter is probably functional. Using gel shift assays we observed in vitro-binding of PPARα to this PPRE. Moreover, using chromatin immunoprecipitation assays we found that PPARα also binds in vivo to a nucleotide sequence spanning the PPRE at -132, which confirms that this PPRE is functional. In conclusion, the present study shows that the mouse TMABA-DH gene is a direct PPARα target gene. Together with the recent identification of the mouse BBD and the mouse OCTN2 genes as PPARα target genes this finding confirm that PPARα plays a key role in the regulation of carnitine homeostasis by controlling genes involved in carnitine synthesis and carnitine uptake.  相似文献   

18.
19.
20.
Muscle-type carnitine palmitoyltransferase 1 (CPT1β) is considered to be the gene that controls fatty acid mitochondrial β-oxidation. A functional peroxisome proliferator-activated receptor (PPAR) responsive element (PPRE) and a myocite-specific (MEF2) site that binds MEF2A and MEF2C in the promoter of this gene had been previously identified. We investigated the roles of the PPRE and the MEF2 binding sites and the potential interaction between PPARα and MEF2C regulating the CPT1β gene promoter. Mutation analysis indicated that the MEF2 site contributed to the activation of the CPT1β promoter by PPAR in C2C12 cells. The reporter construct containing the PPRE and the MEF2C site was synergistically activated by co-expression of PPAR, retinoid X receptor (RXR) and MEF2C in non-muscle cells. Moreover, protein-binding assays demonstrated that MEF2C and PPAR specifically bound to one another in vitro. Also for the synergistic activation of the CPT1β gene promoter by MEF2C and PPARα-RXRα, a precise arrangement of its binding sites was essential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号