首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
HG Zot  JE Hasbun  N Van Minh 《PloS one》2012,7(7):e41098
The reversal of flagellar motion (switching) results from the interaction between a switch complex of the flagellar rotor and a torque-generating stationary unit, or stator (motor unit). To explain the steeply cooperative ligand-induced switching, present models propose allosteric interactions between subunits of the rotor, but do not address the possibility of a reaction that stimulates a bidirectional motor unit to reverse direction of torque. During flagellar motion, the binding of a ligand-bound switch complex at the dwell site could excite a motor unit. The probability that another switch complex of the rotor, moving according to steady-state rotation, will reach the same dwell site before that motor unit returns to ground state will be determined by the independent decay rate of the excited-state motor unit. Here, we derive an analytical expression for the energy coupling between a switch complex and a motor unit of the stator complex of a flagellum, and demonstrate that this model accounts for the cooperative switching response without the need for allosteric interactions. The analytical result can be reproduced by simulation when (1) the motion of the rotor delivers a subsequent ligand-bound switch to the excited motor unit, thereby providing the excited motor unit with a second chance to remain excited, and (2) the outputs from multiple independent motor units are constrained to a single all-or-none event. In this proposed model, a motor unit and switch complex represent the components of a mathematically defined signal transduction mechanism in which energy coupling is driven by steady-state and is regulated by stochastic ligand binding. Mathematical derivation of the model shows the analytical function to be a general form of the Hill equation (Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40: iv-vii).  相似文献   

2.
In Escherichia coli chemotaxis, the switch from counterclockwise to clockwise rotation of the flagella occurs as a result of binding of the phosphorylated CheY protein to the base of the flagellum. Analysis of CheY variants has provided a picture of the surface of CheY that undergoes conformational shifts, as a result of phosphorylation, to interact directly with the flagellum. Whether phospho-CheY binding and flagellar switching are sequential steps or can occur in a concerted fashion has yet to be determined.  相似文献   

3.
By reverse-engineering we have detected eight kinetic phases of the symmetric switch cycle of the Halobacterium salinarum flagellar motor assembly and identified those steps in the switch cycle that are controlled by sensory rhodopsins during phototaxis. Upon switching the rotational sense, the flagellar motor assembly passes through a stop state from which all subunits synchronously resume rotation in the reverse direction. The assembly then synchronously proceeds through three subsequent functional states of the switch: Refractory, Competent, and Active, from which the rotational sense is switched again. Sensory control of the symmetric switch cycle occurs at two steps in each rotational sense by inversely regulating the probabilities for a change from the Refractory to the Competent and from Competent to the Active rotational mode. We provide a mathematical model for flagellar motor switching and its sensory control, which is able to explain all tested experimental results on spontaneous and light-controlled motor switching, and give a mechanistic explanation based on synchronous conformational transitions of the subunits of the switch complex after reversible dissociation and binding of a response regulator (CheYP). We conclude that the kinetic mechanism of flagellar motor switching and its sensory control is fundamentally different in the archaeon H. salinarum and the bacterium Escherichia coli.  相似文献   

4.
Flipping the switch: bringing order to flagellar assembly   总被引:1,自引:0,他引:1  
The bacterial flagellum is a complex self-assembling nanomachine that contains its own type III protein export apparatus. Upon completion of early flagellar structure, this apparatus switches substrate specificity to export late structural subunits, thereby coupling sequential flagellar gene expression with flagellar assembly. The switch is achieved by a conformational change of the export apparatus component FlhB driven by the flagellar hook-length control protein FliK. Two basic models of FliK- and FlhB-based switching are currently being pursued, together with the investigation of another factor, Flk, which prevents premature export of late substrates. Here, we review in detail each of these three export switch components and present the current understanding of how they work in concert in the making of a flagellum.  相似文献   

5.

Background  

Archaea share with bacteria the ability to bias their movement towards more favorable locations, a process known as taxis. Two molecular systems drive this process: the motility apparatus and the chemotaxis signal transduction system. The first consists of the flagellum, the flagellar motor, and its switch, which allows cells to reverse the rotation of flagella. The second targets the flagellar motor switch in order to modulate the switching frequency in response to external stimuli. While the signal transduction system is conserved throughout archaea and bacteria, the archaeal flagellar apparatus is different from the bacterial one. The proteins constituting the flagellar motor and its switch in archaea have not yet been identified, and the connection between the bacterial-like chemotaxis signal transduction system and the archaeal motility apparatus is unknown.  相似文献   

6.
Bacterial flagellar switching between counterclockwise and clockwise directions is mediated by the coupling of the chemotactic system and the motor switch complex. The conformational changes of FliG are closely associated with this switching mechanism. We present two crystal structures of FliG(MC) from Helicobacter pylori, each showing distinct domain orientations from previously solved structures. A 180° rotation of the charged ridge-containing C-terminal subdomain FliG(Cα1-6) that is prompted by the rotational freedom of Met245 psi and Phe246 phi at the MFXF motif was revealed. Studies on the swarming and swimming behavior of Escherichia coli mutants further identified the importance of the ???MFXF??? motif and a highly conserved residue, Asn216, in motor switching. Additionally, multiple conformations of FliG(Cα1-6) were demonstrated by intramolecular cysteine crosslinking. The conformational flexibility of FliGc leads us to propose a model that accounts for the symmetrical torque generation process and for the dynamics of the motor.  相似文献   

7.
A mechanism coupling the transmembrane flow of protons to the rotation of the bacterial flagellum is studied. The coupling is accomplished by means of an array of tilted rows of positive and negative charges around the circumference of the rotor, which interacts with a linear array of proton binding sites in channels. We present a rigorous treatment of the electrostatic interactions using minimal assumptions. Interactions with the transition states are included, as well as proton-proton interactions in and between channels. In assigning values to the parameters of the model, experimentally determined structural characteristics of the motor have been used. According to the model, switching and pausing occur as a consequence of modest conformational changes in the rotor. In contrast to similar approaches developed earlier, this model closely reproduces a large number of experimental findings from different laboratories, including the nonlinear behavior of the torque-frequency relation in Escherichia coli, the stoichiometry of the system in Streptococcus, and the pH-dependence of swimming speed in Bacillus subtilis.  相似文献   

8.
The bacterial flagellar motor (BFM) is a molecular machine that rotates the helical filaments and propels the bacteria swimming toward favorable conditions. In our previous works, we built a stochastic conformational spread model to explain the dynamic and cooperative behavior of BFM switching. Here, we extended this model to test whether it can explain the latest experimental observations regarding CheY-P regulation and motor structural adaptivity. We show that our model predicts a strong correlation between rotational direction and the number of CheY-Ps bound to the switch complex, in agreement with the latest finding from Fukuoka et al. It also predicts that the switching sensitivity of the BFM can be fine-tuned by incorporating additional units into the switch complex, as recently demonstrated by Yuan et al., who showed that stoichiometry of FliM undergoes dynamic change to maintain ultrasensitivity in the motor switching response. In addition, by locking some rotor switching units on the switch complex into the stable clockwise-only conformation, our model has accurately simulated recent experiments expressing clockwise-locked FliG(ΔPAA) into the switch complex and reproduced the increased switching rate of the motor.  相似文献   

9.
Many types of bacteria propel themselves using elongated structures known as flagella. The bacterial flagellar filament is a relatively simple and well-studied macromolecular assembly, which assumes different helical shapes when rotated in different directions. This polymorphism enables a bacterium to switch between running and tumbling modes; however, the mechanism governing the filament polymorphism is not completely understood. Here we report a study of the bacterial flagellar filament using numerical simulations that employ a novel coarse-grained molecular dynamics method. The simulations reveal the dynamics of a half-micrometer-long flagellum segment on a timescale of tens of microseconds. Depending on the rotation direction, specific modes of filament coiling and arrangement of monomers are observed, in qualitative agreement with experimental observations of flagellar polymorphism. We find that solvent-protein interactions are likely to contribute to the polymorphic helical shapes of the filament.  相似文献   

10.
The molecular cascade that controls switching of the direction of rotation of Escherichia coli flagellar motors is well known, but the conformational changes that allow the rotor to switch are still unclear. The signaling molecule CheY, when phosphorylated, binds to the C-ring at the base of the rotor, raising the probability that the motor spins clockwise. When the concentration of CheY-P is so low that the motor rotates exclusively counterclockwise (CCW), the C-ring recruits more monomers of FliM and tetramers of FliN, the proteins to which CheY-P binds, thus increasing the motor's sensitivity to CheY-P and allowing it to switch once again. Motors that rotate exclusively CCW have more FliM and FliN subunits in their C-rings than motors that rotate exclusively clockwise. How are the new subunits accommodated? Does the diameter of the C-ring increase, or do FliM and FliN get packed in a different pattern, keeping the overall diameter of the C-ring constant? Here, by measuring fluorescence anisotropy of yellow fluorescent protein-labeled motors, we show that the CCW C-rings accommodate more FliM monomers without changing the spacing between them, and more FliN monomers at the same time as increasing their effective spacing and/or changing their orientation within the tetrameric structure.  相似文献   

11.
The reliable response to weak biological signals requires that they be amplified with fidelity. In E. coli, the flagellar motors that control swimming can switch direction in response to very small changes in the concentration of the signaling protein CheY-P, but how this works is not well understood. A recently proposed allosteric model based on cooperative conformational spread in a ring of identical protomers seems promising as it is able to qualitatively reproduce switching, locked state behavior and Hill coefficient values measured for the rotary motor. In this paper we undertook a comprehensive simulation study to analyze the behavior of this model in detail and made predictions on three experimentally observable quantities: switch time distribution, locked state interval distribution, Hill coefficient of the switch response. We parameterized the model using experimental measurements, finding excellent agreement with published data on motor behavior. Analysis of the simulated switching dynamics revealed a mechanism for chemotactic ultrasensitivity, in which cooperativity is indispensable for realizing both coherent switching and effective amplification. These results showed how cells can combine elements of analog and digital control to produce switches that are simultaneously sensitive and reliable.  相似文献   

12.
The bacterial flagellar motor drives the rotation of helical flagellar filaments to propel bacteria through viscous media. It consists of a dynamic population of mechanosensitive stators that are embedded in the inner membrane and activate in response to external load. This entails assembly around the rotor, anchoring to the peptidoglycan layer to counteract torque from the rotor and opening of a cation channel to facilitate an influx of cations, which is converted into mechanical rotation. Stator complexes are comprised of four copies of an integral membrane A subunit and two copies of a B subunit. Each B subunit includes a C-terminal OmpA-like peptidoglycan-binding (PGB) domain. This is thought to be linked to a single N-terminal transmembrane helix by a long unstructured peptide, which allows the PGB domain to bind to the peptidoglycan layer during stator anchoring. The high-resolution crystal structures of flagellar motor PGB domains from Salmonella enterica (MotBC2) and Vibrio alginolyticus (PomBC5) have previously been elucidated. Here, we use small-angle X-ray scattering (SAXS). We show that unlike MotBC2, the dimeric conformation of the PomBC5 in solution differs to its crystal structure, and explore the functional relevance by characterising gain-of-function mutants as well as wild-type constructs of various lengths. These provide new insight into the conformational diversity of flagellar motor PGB domains and experimental verification of their overall topology.  相似文献   

13.
Torque and rotation rate of the bacterial flagellar motor.   总被引:5,自引:4,他引:1       下载免费PDF全文
This paper describes an analysis of microscopic models for the coupling between ion flow and rotation of bacterial flagella. In model I it is assumed that intersecting half-channels exist on the rotor and the stator and that the driving ion is constrained to move together with the intersection site. Model II is based on the assumption that ion flow drives a cycle of conformational transitions in a channel-like stator subunit that are coupled to the motion of the rotor. Analysis of both mechanisms yields closed expressions relating the torque M generated by the flagellar motor to the rotation rate v. Model I (and also, under certain assumptions, model II) accounts for the experimentally observed linear relationship between M and v. The theoretical equations lead to predictions on the relationship between rotation rate and driving force which can be tested experimentally.  相似文献   

14.
15.
A model is presented for the rotary motor that drives bacterial flagella, using the electrochemical gradient of protons across the cytoplasmic membrane. The model unifies several concepts present in previous models. Torque is generated by proton-conducting particles around the perimeter of the rotor at the base of the flagellum. Protons in channels formed by these particles interact electrostatically with tilted lines of charges on the rotor, providing "loose coupling" between proton flux and rotation of the flagellum. Computer simulations of the model correctly predict the experimentally observed dynamic properties of the motor. Unlike previous models, the motor presented here may rotate either way for a given direction of the protonmotive force. The direction of rotation only depends on the level of occupancy of the proton channels. This suggests a novel and simple mechanism for the switching between clockwise and counterclockwise rotation that is the basis of bacterial chemotaxis.  相似文献   

16.
FliG is a component of the switch complex on the rotor of the bacterial flagellum. Each flagellar motor contains about 25 FliG molecules. The protein of Escherichia coli has 331 amino acid residues and comprises at least two discrete domains. A C-terminal domain of about 100 residues functions in rotation and includes charged residues that interact with the stator protein MotA. Other parts of the FliG protein are essential for flagellar assembly and interact with the MS ring protein FliF and the switch complex protein FliM. The crystal structure of the middle and C-terminal parts of FliG shows two globular domains joined by an alpha-helix and a short extended segment that contains two well-conserved glycine residues. Here, we describe targeted cross-linking studies of FliG that reveal features of its organization in the flagellum. Cys residues were introduced at various positions, singly or in pairs, and cross-linking by a maleimide or disulfide-inducing oxidant was examined. FliG molecules with pairs of Cys residues at certain positions in the middle domain formed disulfide-linked dimers and larger multimers with a high yield, showing that the middle domains of adjacent subunits are in fairly close proximity and putting constraints on the relative orientation of the domains. Certain proteins with single Cys replacements in the C-terminal domain formed dimers with moderate yields but not larger multimers. On the basis of the cross-linking results and the data available from mutational and electron microscopic studies, we propose a model for the organization of FliG subunits in the flagellum.  相似文献   

17.
The mechanism of function of the bacterial flagellar switch, which determines the direction of flagellar rotation and is essential for chemotaxis, has remained an enigma for many years. Here we show that the switch complex associates with the membrane-bound respiratory protein fumarate reductase (FRD). We provide evidence that FRD binds to preparations of isolated switch complexes, forms a 1:1 complex with the switch protein FliG, and that this interaction is required for both flagellar assembly and switching the direction of flagellar rotation. We further show that fumarate, known to be a clockwise/switch factor, affects the direction of flagellar rotation through FRD. These results not only uncover a new component important for switching and flagellar assembly, but they also reveal that FRD, an enzyme known to be primarily expressed and functional under anaerobic conditions in Escherichia coli, nonetheless, has important, unexpected functions under aerobic conditions.  相似文献   

18.
Brown PN  Hill CP  Blair DF 《The EMBO journal》2002,21(13):3225-3234
The FliG protein is essential for assembly, rotation and clockwise/counter-clockwise (CW/CCW) switching of the bacterial flagellum. About 25 copies of FliG are present in a large rotor-mounted assembly termed the 'switch complex', which also contains the proteins FliM and FliN. Mutational studies have identified the segments of FliG most crucial for flagellar assembly, rotation and switching. The structure of the C-terminal domain, which functions specifically in rotation, was reported previously. Here, we describe the crystal structure of a larger fragment of the FliG protein from Thermotoga maritima, which encompasses the middle and C-terminal parts of the protein (termed FliG-MC). The FliG-MC molecule consists of two compact globular domains, linked by an alpha-helix and an extended segment that contains a well-conserved Gly-Gly motif. Mutational studies indicate that FliM binds to both of the globular domains, and given the flexibility of the linking segment, FliM is likely to determine the relative orientation of the domains in the flagellum. We propose a model for the organization of FliG-MC molecules in the flagellum, and suggest that CW/CCW switching might occur by movement of the C-terminal domain relative to other parts of FliG, under the control of FliM.  相似文献   

19.
Salmonella typhimurium FliG and FliM are two of three proteins known to be necessary for flagellar morphogenesis as well as energization and switching of flagellar rotation. We have determined FliG and FliM levels in cellular fractions and in extended flagellar basal bodies, using antibodies raised against the purified proteins. Both proteins were found predominantly in the detergent-solubilized particulate fraction containing flagellar structures. Basal flagellar fragments could be separated from partially constructed basal bodies by gel filtration chromatography. FliG and FliM were present in an approximately equimolar ration in all gel-filtered fractions. FliG and FliM copy numbers, estimated relative to that of the hook protein from the early fractions containing long, basal, flagellar fragments, were (means +/- standard errors) 41 +/- 10 and 37 +/- 13 per flagellum, respectively. Extended structures were present in the earliest identifiable basal bodies. Immunoelectron microscopy and immunoblot gel analysis suggested that the FliG and, to a less certain degree, the FliM contents of these structures were the same as those for the complete basal bodies. These facts are consistent with the postulate that FliG and FliM affect flagellar morphogenesis as part of the extended basal structure, formation of which is necessary for assembly of more-distal components of the flagellum. The determined stoichiometries will provide important constraints to modelling energization and switching of flagellar rotation.  相似文献   

20.
The bacterial flagellar motor is driven by an ion flux through a channel called MotAB in Escherichia coli or Salmonella and PomAB in Vibrio alginolyticus. PomAB is composed of two transmembrane (TM) components, PomA and PomB, and converts a sodium ion flux to rotation of the flagellum. Its homolog, MotAB, utilizes protons instead of sodium ions. PomB/MotB has a peptidoglycan (PG)-binding motif in the periplasmic domain, allowing it to function as the stator by being anchored to the PG layer. To generate torque, PomAB/MotAB is thought to undergo a conformational change triggered by the ion flux and to interact directly with FliG, a component of the rotor. Here, we present the first three-dimensional structure of this torque-generating stator unit analyzed by electron microscopy. The structure of PomAB revealed two arm domains, which contain the PG-binding site, connected to a large base made of the TM and cytoplasmic domains. The arms lean downward to the membrane surface, likely representing a "plugged" conformation, which would prevent ions leaking through the channel. We propose a model for how PomAB units are placed around the flagellar basal body to function as torque generators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号