首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we designed a short alpha-helical fibril-forming peptide (alphaFFP) that can form alpha-helical nanofibrils at acid pH. The non-physiological conditions of the fibril formation hamper biomedical application of alphaFFP. It was hypothesized that electrostatic repulsion between glutamic acid residues present at positions (g) of the alphaFFP coiled-coil sequence prevent the fibrillogenesis at neutral pH, while their protonation below pH 5.5 triggers axial growth of the fibril. To test this hypothesis, we synthesized alphaFFPs where all glutamic acid residues were substituted by glutamines or serines. The electron microscopy study confirmed that the modified alphaFFPs form nanofibrils in a wider range of pH (2.5-11). Circular dichroism spectroscopy, sedimentation, diffusion and differential scanning calorimetry showed that the fibrils are alpha-helical and have elongated and highly stable cooperative tertiary structures. This work leads to a better understanding of interactions that control the fibrillogenesis of the alphaFFPs and opens opportunities for their biomedical application.  相似文献   

2.
The design of proteins that self-assemble into well-defined, higher order structures is an important goal that has potential applications in synthetic biology, materials science, and medicine. We previously designed a two-component protein system, designated A-(+) and A-(−), in which self-assembly is mediated by complementary electrostatic interactions between two coiled-coil sequences appended to the C-terminus of a homotrimeric enzyme with C3 symmetry. The coiled-coil sequences are attached through a short, flexible spacer sequence providing the system with a high degree of conformational flexibility. Thus, the primary constraint guiding which structures the system may assemble into is the symmetry of the protein building block. We have now characterized the properties of the self-assembling system as a whole using native gel electrophoresis and analytical ultracentrifugation (AUC) and the properties of individual assemblies using cryo-electron microscopy (EM). We show that upon mixing, A-(+) and A-(−) form only six different complexes in significant concentrations. The three predominant complexes have hydrodynamic properties consistent with the formation of heterodimeric, tetrahedral, and octahedral protein cages. Cryo-EM of size-fractionated material shows that A-(+) and A-(−) form spherical particles with diameters appropriate for tetrahedral or octahedral protein cages. The particles varied in diameter in an almost continuous manner suggesting that their structures are extremely flexible.  相似文献   

3.
In this study, we synthesized an Azo-py phosphoramidite, featuring azobenzene and pyrene units, as a novel fluorescent and isomeric (trans- and cis-azobenzene units) material, which we incorporated in an i-motif DNA sequence. We then monitored the structural dynamics and changes in fluorescence as the modified DNA sequences transformed from single strands at pH 7 to i-motif quadruplex structures at pH 3. After incorporating Azo-py into the 4A loop position of an i-motif sequence, dramatic changes in fluorescence occurred as the DNA structures changed from single-strands to i-motif quadruplex structures. Interestingly, the cis form of Azo-py induced a more stable i-motif structure than did the trans form, as confirmed from circular dichroism spectra and melting temperature data. The absorption and fluorescence signals of these Azo-py-incorporated i-motif systems exhibited switchable and highly correlated signaling patterns. Such isomeric structures based on Azo-py might find potential applications in biology, where control over stable i-motif quadruplex structures might be performed with switchable fluorescence signaling.  相似文献   

4.
SNARE proteins mediate intracellular membrane fusion by forming a coiled-coil complex to merge opposing membranes. A "fusion-active" neuronal SNARE complex is a parallel four-helix bundle containing two coiled-coil domains from SNAP-25 and one coiled-coil domain each from syntaxin-1a and VAMP-2. "Prefusion" assembly intermediate complexes can also form from these SNAREs. We studied the N-terminal coiled-coil domain of SNAP-23 (SNAP-23N), a non-neuronal homologue of SNAP-25, and its interaction with other coiled-coil domains. SNAP-23N can assemble spontaneously with the coiled-coil domains from SNAP-23C, syntaxin-4, and VAMP-3 to form a heterotetrameric complex. Unexpectedly, pure SNAP-23N crystallizes as a coiled-coil homotetrameric complex. The four helices have a parallel orientation and are symmetrical about the long axis. The complex is stabilized through the interaction of conserved hydrophobic residues comprising the a and d positions of the coiled-coil heptad repeats. In addition, a central, highly conserved glutamine residue (Gln-48) is buried within the interface by hydrogen bonding between glutamine side chains derived from adjacent subunits and to solvent molecules. A comparison of the SNAP-23N structure to other SNARE complex structures reveals how a simple coiled-coil motif can form diverse SNARE complexes.  相似文献   

5.
6.
Tropomyosin (Tm) is an actin-binding, thin filament, two-stranded α-helical coiled-coil critical for muscle contraction and cytoskeletal function. We made the first identification of a stability control region (SCR), residues 97–118, in the Tm sequence that controls overall protein stability but is not required for folding. We also showed that the individual α-helical strands of the coiled-coil are stabilized by Leu-110, whereas the hydrophobic core is destabilized in the SCR by Ala residues at three consecutive d positions. Our hypothesis is that the stabilization of the individual α-helices provides an optimum stability and allows functionally beneficial dynamic motion between the α-helices that is critical for the transmission of stabilizing information along the coiled-coil from the SCR. We prepared three recombinant (rat) Tm(1–131) proteins, including the wild type sequence, a destabilizing mutation L110A, and a stabilizing mutation A109L. These proteins were evaluated by circular dichroism (CD) and differential scanning calorimetry. The single mutation L110A destabilizes the entire Tm(1–131) molecule, showing that the effect of this mutation is transmitted 165 Å along the coiled-coil in the N-terminal direction. The single mutation A109L prevents the SCR from transmitting stabilizing information and separates the coiled-coil into two domains, one that is ∼9 °C more stable than wild type and one that is ∼16 °C less stable. We know of no other example of the substitution of a stabilizing Leu residue in a coiled-coil hydrophobic core position d that causes this dramatic effect. We demonstrate the importance of the SCR in controlling and transmitting the stability signal along this rodlike molecule.  相似文献   

7.
Coiled-coil formation of four different oligopeptides was characterized in solution, on hydrogels, and on membranes by employing circular dichroism spectroscopy, surface plasmon resonance spectroscopy, attenuated total reflection infrared spectroscopy, and ellipsometry. Peptide sequences rich in either glutamic acid (E: E3Cys, i-E3Cys) or lysine (K: K3Cys, i-K3Cys) were used to represent minimal mimics of eukaryotic SNARE motifs. Half of the peptides were synthesized in reverse sequence, so that parallel and antiparallel heptad coiled-coil structures were formed. Either E-peptides or K-peptides were attached covalently to phospholipid anchors via maleimide chemistry, and served as receptors for the recognition of the corresponding binding partners added to solution. Attenuated total reflection infrared spectroscopy of single bilayers confirmed the formation of coiled-coil complexes at the membrane interface. Coiled-coil formation in solution, as compared with association at the membrane surface, displays considerably larger binding constants that are largely attributed to loss of translational entropy at the interface. Finally, the fusogenicity of the various coiled-coil motifs was explored, and the results provide clear evidence that hemifusion followed by full fusion requires a parallel orientation of α-helices, whereas antiparallel oriented coiled-coil motifs display only docking.  相似文献   

8.
Coiled-coils are widespread protein–protein interaction motifs typified by the heptad repeat (abcdefg)n in which “a” and “d” positions are hydrophobic residues. Although identification of likely coiled-coil sequences is robust, prediction of strand order remains elusive. We present the X-ray crystal structure of a short form (residues 583–611), “Q1-short,” of the coiled-coil assembly specificity domain from the voltage-gated potassium channel Kv7.1 (KCNQ1) determined at 1.7 Å resolution. Q1-short lacks one and half heptads present in a previously studied tetrameric coiled-coil construct, Kv7.1 585–621, “Q1-long.” Surprisingly, Q1-short crystallizes as a trimer. In solution, Q1-short self-assembles more poorly than Q1-long and depends on an R-h-x-x-h-E motif common to trimeric coiled-coils. Addition of native sequences that include “a” and “d” positions C-terminal to Q1-short overrides the R-h-x-x-h-E motif influence and changes assembly state from a weakly associated trimer to a strongly associated tetramer. These data provide a striking example of a naturally occurring amino sequence that exhibits context-dependent folding into different oligomerization states, a three-stranded versus a four-stranded coiled-coil. The results emphasize the degenerate nature of coiled-coil energy landscapes in which small changes can have drastic effects on oligomerization. Discovery of these properties in an ion channel assembly domain and prevalence of the R-h-x-x-h-E motif in coiled-coil assembly domains of a number of different channels that are thought to function as tetrameric assemblies raises the possibility that such sequence features may be important for facilitating the assembly of intermediates en route to the final native state.  相似文献   

9.
Hillar A  Tripet B  Zoetewey D  Wood JM  Hodges RS  Boggs JM 《Biochemistry》2003,42(51):15170-15178
Electron paramagnetic resonance spectroscopy was used to determine relative peptide orientation within homodimeric, alpha-helical coiled-coil structures. Introduction of cysteine (Cys) residues into peptides/proteins for spin labeling allows detection of their oligomerization from exchange broadening or dipolar interactions between residues within 25 A of each other. Two synthetic peptides containing Cys substitutions were used: a 35-residue model peptide and the 30-residue ProP peptide. The model peptide is known to form a stable, parallel homodimeric coiled coil, which is partially destabilized by Cys substitutions at heptad a and d positions (peptides C30a and C33d). The ProP peptide, a 30-residue synthetic peptide, corresponds to residues 468-497 of osmoregulatory transporter ProP from Escherichia coli. It forms a relatively unstable, homodimeric coiled coil that is predicted to be antiparallel in orientation. Cys was introduced in heptad g positions of the ProP peptide, near the N-terminus (K473C, creating peptide C473g) or closer to the center of the sequence (E480C, creating peptide C480g). In contrast to the destabilizing effect of Cys substitution at the core heptad a or d positions of model peptides C30a and C33d, circular dichroism spectroscopy showed that Cys substitutions at the heptad g positions of the ProP peptide had little or no effect on coiled-coil stability. Thermal denaturation analysis showed that spin labeling increased the stability of the coiled coil for all peptides. Strong exchange broadening was detected for both C30a and C33d, in agreement with a parallel structure. EPR spectra of C480g had a large hyperfine splitting of about 90 G, indicative of strong dipole-dipole interactions and a distance between spin-labeled residues of less than 9 A. Spin-spin interactions were much weaker for C473g. These results supported the hypothesis that the ProP peptide primarily formed an antiparallel coiled coil, since formation of a parallel dimer should result in similar spin-spin interactions for the spin-labeled Cys at both sites.  相似文献   

10.
We determined the 1.17 A resolution X-ray crystal structure of a hybrid peptide based on sequences from coiled-coil regions of the proteins GCN4 and cortexillin I. The peptide forms a parallel homodimeric coiled-coil, with C(alpha) backbone geometry similar to GCN4 (rmsd value 0.71 A). Three stabilizing interactions have been identified: a unique hydrogen bonding-electrostatic network not previously observed in coiled-coils, and two other hydrophobic interactions involving leucine residues at positions e and g from both g-a' and d-e' interchain interactions with the hydrophobic core. This is also the first report of the quantitative significance of these interactions. The GCN4/cortexillin hybrid surprisingly has two interchain Glu-Lys' ion pairs that form a hydrogen bonding network with the Asn residues in the core. This network, which was not observed for the reversed Lys-Glu' pair in GCN4, increases the combined stability contribution of each Glu-Lys' salt bridge across the central Asn15-Asn15' core to approximately 0.7 kcal/mole, compared to approximately 0.4 kcal mole(-1) from a Glu-Lys' salt bridge on its own. In addition to electrostatic and hydrogen bonding stabilization of the coiled-coil, individual leucine residues at positions e and g in the hybrid peptide also contribute to stability by 0.7 kcal/mole relative to alanine. These interactions are of critical importance to understanding the stability requirements for coiled-coil folding and in modulating the stability of de novo designed macromolecules containing this motif.  相似文献   

11.
Because the space of folded protein structures is highly degenerate, with recurring secondary and tertiary motifs, methods for representing protein structure in terms of collective physically relevant coordinates are of great interest. By collapsing structural diversity to a handful of parameters, such methods can be used to delineate the space of designable structures (i.e., conformations that can be stabilized with a large number of sequences)—a crucial task for de novo protein design. We first demonstrate this on natural α-helical coiled coils using the Crick parameterization. We show that over 95% of known coiled-coil structures are within  1-Å Cα root mean square deviation of a Crick-ideal backbone. Derived parameters show that natural geometric space of coiled coils is highly restricted and can be represented by “allowed” conformations amidst a potential continuum of conformers. Allowed structures have (1) restricted axial offsets between helices, which differ starkly between parallel and anti-parallel structures; (2) preferred superhelical radii, which depend linearly on the oligomerization state; (3) pronounced radius-dependent a- and d-position amino acid propensities; and (4) discrete angles of rotation of helices about their axes, which are surprisingly independent of oligomerization state or orientation. In all, we estimate the space of designable coiled-coil structures to be reduced at least 160-fold relative to the space of geometrically feasible structures. To extend the benefits of structural parameterization to other systems, we developed a general mathematical framework for parameterizing arbitrary helical structures, which reduces to the Crick parameterization as a special case. The method is successfully validated on a set of non-coiled-coil helical bundles, frequent in channels and transporter proteins, which show significant helix bending but not supercoiling. Programs for coiled-coil parameter fitting and structure generation are provided via a web interface at http://www.gevorggrigoryan.com/cccp/, and code for generalized helical parameterization is available upon request.  相似文献   

12.
13.
Wise JG  Vogel PD 《Biophysical journal》2008,94(12):5040-5052
One remaining challenge to our understanding of the ATP synthase concerns the dimeric coiled-coil stator subunit b of bacterial synthases. The subunit b-dimer has been implicated in important protein interactions that appear necessary for energy conservation and that may be instrumental in energy conservation during rotary catalysis by the synthase. Understanding the stator structure and its interactions with the rest of the enzyme is crucial to the understanding of the overall catalytic mechanism. Controversy exists on whether subunit b adopts a classic left-handed or a presumed right-handed dimeric coiled-coil and whether or not staggered pairing between nonhomologous residues in the homodimer is required for intersubunit packing. In this study we generated molecular models of the Escherichiacoli subunit b-dimer that were based on the well-established heptad-repeat packing exhibited by left-handed, dimeric coiled-coils by employing simulated annealing protocols with structural restraints collected from known structures. In addition, we attempted to create hypothetical right-handed coiled-coil models and left- and right-handed models with staggered packing in the coiled-coil domains. Our analyses suggest that the available structural and biochemical evidence for subunit b can be accommodated by classic left-handed, dimeric coiled-coil quaternary structures.  相似文献   

14.
DNA and RNA oligomers that contain stretches of guanines can associate to form stable secondary structures including G-quadruplexes. Our study shows that the (UUAAAAGAAAAGGGGGGAU) RNA sequence, from the human immunodeficiency virus type 1 (HIV-1 polypurine tract or PPT sequence) forms in vitro a stable folded structure involving the G-run. We have investigated the ability of pyrimidine peptide nucleic acid (PNA) oligomers targeted to the PPT sequence to invade the folded RNA and exhibit biological activity at the translation level in vitro and in cells. We find that PNAs can form stable complexes even with the structured PPT RNA target at neutral pH. We show that T-rich PNAs, namely the tridecamer-I PNA (C4T4CT4) forms triplex structures whereas the C-rich tridecamer-II PNA (TC6T4CT) likely forms a duplex with the target RNA. Interestingly, we find that both C-rich and T-rich PNAs arrested in vitro translation elongation specifically at the PPT target site. Finally, we show that T-rich and C-rich tridecamer PNAs that have been identified as efficient and specific blockers of translation elongation in vitro, specifically inhibit translation in streptolysin-O permeabilized cells where the PPT target sequence has been introduced upstream the reporter luciferase gene.  相似文献   

15.
16.
The transport of silicon is an integral part of the synthesis of the silicified cell wall of diatoms, yet knowledge of the number, features, and regulation of silicon transporters is lacking. We report the isolation and sequence determination of five silicon transporter (SIT) genes from Cylindrotheca fusiformis, and examine their expression patterns during cell wall synthesis. The encoded SIT amino acid sequences are highly conserved in their putative transmembrane domains. Nine conserved cysteines in this domain may account for the sensitivity of silicon uptake to sulfhydryl blocking agents. A less conserved C-terminal domain is predicted to form coiled-coil structures, suggesting that the SITs interact with other proteins. We show that SIT gene expression is induced just prior to, and during, cell wall synthesis. The genes are expressed at very different levels, and SIT1 is expressed in a different pattern from SIT 2–5. Hybridization experiments show that multiple SIT gene copies are present in all diatom species tested. From the data we infer that individual transporters play specific roles in silicon uptake, and propose that the cell regulates uptake by controlling the amount or location of each. The identification of all SIT genes in C. fusiformis will enhance our understanding of the mechanism and control of silicon transport in diatoms.  相似文献   

17.
mRNAs encodes not only information that determines amino acid sequences but also additional layers of information that regulate the translational processes. Notably, translational halt at specific position caused by rare codons or stable RNA structures is one of the potential factors regulating the protein expressions and structures. In this study, a quadruplex-forming potential (QFP) sequence derived from an open reading frame of human estrogen receptor α (hERα) mRNA was revealed to form parallel G-quadruplex and halt the translation elongation in vitro. Moreover, when the full-length hERα and variants containing synonymous mutations in the QFP sequence were expressed in cells, translation products cleaved at specific site were observed in quantities dependent on the thermodynamic stability of the G-quadruplexes. These results suggest that the G-quadruplex formation in the coding region of the hERα mRNA impacts folding and proteolysis of hERα protein by slowing down or temporarily stalling the translation elongation.  相似文献   

18.
Repeat proteins have a modular organization and a regular architecture that make them attractive models for design and directed evolution experiments. HEAT repeat proteins, although very common, have not been used as a scaffold for artificial proteins, probably because they are made of long and irregular repeats. Here, we present and validate a consensus sequence for artificial HEAT repeat proteins. The sequence was defined from the structure-based sequence analysis of a thermostable HEAT-like repeat protein. Appropriate sequences were identified for the N- and C-caps. A library of genes coding for artificial proteins based on this sequence design, named αRep, was assembled using new and versatile methodology based on circular amplification. Proteins picked randomly from this library are expressed as soluble proteins. The biophysical properties of proteins with different numbers of repeats and different combinations of side chains in hypervariable positions were characterized. Circular dichroism and differential scanning calorimetry experiments showed that all these proteins are folded cooperatively and are very stable (Tm > 70 °C). Stability of these proteins increases with the number of repeats. Detailed gel filtration and small-angle X-ray scattering studies showed that the purified proteins form either monomers or dimers. The X-ray structure of a stable dimeric variant structure was solved. The protein is folded with a highly regular topology and the repeat structure is organized, as expected, as pairs of alpha helices. In this protein variant, the dimerization interface results directly from the variable surface enriched in aromatic residues located in the randomized positions of the repeats. The dimer was crystallized both in an apo and in a PEG-bound form, revealing a very well defined binding crevice and some structure flexibility at the interface. This fortuitous binding site could later prove to be a useful binding site for other low molecular mass partners.  相似文献   

19.
20.
Interestingly, our previously published structure of the coil 1A fragment of the human intermediate filament protein vimentin turned out to be a monomeric α-helical coil instead of the expected dimeric coiled coil. However, the 39-amino-acid-long helix had an intrinsic curvature compatible with a coiled coil. We have now designed four mutants of vimentin coil 1A, modifying key a and d positions in the heptad repeat pattern, with the aim of investigating the molecular criteria that are needed to stabilize a dimeric coiled-coil structure. We have analysed the biophysical properties of the mutants by circular dichroism spectroscopy, analytical ultracentrifugation and X-ray crystallography. All four mutants exhibited an increased stability over the wild type as indicated by a rise in the melting temperature (Tm). At a concentration of 0.1 mg/ml, the Tm of the peptide with the single point mutation Y117L increased dramatically by 46 °C compared with the wild-type peptide. In general, the introduction of a single stabilizing point mutation at an a or a d position did induce the formation of a stable dimer as demonstrated by sedimentation equilibrium experiments. The dimeric oligomerisation state of the Y117L peptide was furthermore confirmed by X-ray crystallography, which yielded a structure with a genuine coiled-coil geometry. Most notably, when this mutation was introduced into full-length vimentin, filament assembly was completely arrested at the unit-length filament (ULF) level, both in vitro and in cDNA-transfected cultured cells. Therefore, the low propensity of the wild-type coil 1A to form a stable two-stranded coiled coil is most likely a prerequisite for the end-to-end annealing of ULFs into filaments. Accordingly, the coil 1A domains might “switch” from a dimeric α-helical coiled coil into a more open structure, thus mediating, within the ULFs, the conformational rearrangements of the tetrameric subunits that are needed for the intermediate filament elongation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号