首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The activation of heterodimeric integrin adhesion receptors from low to high affinity states occurs in response to intracellular signals that act on the short cytoplasmic tails of integrin β subunits. Binding of the talin FERM (four-point-one, ezrin, radixin, moesin) domain to the integrin β tail provides one key activation signal, but recent data indicate that the kindlin family of FERM domain proteins also play a central role. Kindlins directly bind integrin β subunit cytoplasmic domains at a site distinct from the talin-binding site, and target to focal adhesions in adherent cells. However, the mechanisms by which kindlins impact integrin activation remain largely unknown. A notable feature of kindlins is their similarity to the integrin-binding and activating talin FERM domain. Drawing on this similarity, here we report the identification of an unstructured insert in the kindlin F1 FERM domain, and provide evidence that a highly conserved polylysine motif in this loop supports binding to negatively charged phospholipid head groups. We further show that the F1 loop and its membrane-binding motif are required for kindlin-1 targeting to focal adhesions, and for the cooperation between kindlin-1 and -2 and the talin head in αIIbβ3 integrin activation, but not for kindlin binding to integrin β tails. These studies highlight the structural and functional similarities between kindlins and the talin head and indicate that as for talin, FERM domain interactions with acidic membrane phospholipids as well β-integrin tails contribute to the ability of kindlins to activate integrins.  相似文献   

2.
Integrins are cell surface receptors crucial for cell migration and adhesion. They are activated by interactions of the talin head domain with the membrane surface and the integrin β cytoplasmic tail. Here, we use coarse-grained molecular dynamic simulations and nuclear magnetic resonance spectroscopy to elucidate the membrane-binding surfaces of the talin head (F2-F3) domain. In particular, we show that mutations in the four basic residues (K258E, K274E, R276E, and K280E) in the F2 binding surface reduce the affinity of the F2-F3 for the membrane and modify its orientation relative to the bilayer. Our results highlight the key role of anionic lipids in talin/membrane interactions. Simulation of the F2-F3 in complex with the α/β transmembrane dimer reveals information for its orientation relative to the membrane. Our studies suggest that the perturbed orientation of talin relative to the membrane in the F2 mutant would be expected to in turn perturb talin/integrin interactions.  相似文献   

3.
Platelet aggregation is the consequence of the binding of extracellular bivalent ligands such as fibrinogen and von Willebrand factor to the high affinity, active state of integrin αIIbβ3. This state is achieved through a so‐called “inside‐out” mechanism characterized by the membrane‐assisted formation of a complex between the F2 and F3 subdomains of intracellular protein talin and the integrin β3 tail. Here, we present the results of multi‐microsecond, all‐atom molecular dynamics simulations carried on the complete transmembrane (TM) and C‐terminal (CT) domains of αIIbβ3 integrin in an explicit lipid‐water environment, and in the presence or absence of the talin‐1 F2 and F3 subdomains. These large‐scale simulations provide unprecedented molecular‐level insights into the talin‐driven inside‐out activation of αIIbβ3 integrin. Specifically, they suggest a preferred conformation of the complete αIIbβ3 TM/CT domains in a lipid‐water environment, and testable hypotheses of key intermolecular interactions between αIIbβ3 integrin and the F2/F3 domains of talin‐1. Notably, not only do these simulations give support to a stable left‐handed reverse turn conformation of the αIIb juxtamembrane motif rather than a helical turn, but they raise the question as to whether TM helix separation is required for talin‐driven integrin activation. Proteins 2014; 82:3231–3240. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
The globular head domain of talin, a large multi-domain cytoplasmic protein, is required for inside-out activation of the integrins, a family of heterodimeric transmembrane cell adhesion molecules. Talin head contains a FERM domain that is composed of F1, F2, and F3 subdomains. A F0 subdomain is located N-terminus to F1. The F3 contains a canonical phosphotyrosine binding (PTB) fold that directly interacts with the membrane proximal NPxY/F motif in the integrin β cytoplasmic tail. This interaction is stabilized by the F2 that interacts with the lipid head-groups of the plasma membrane. In comparison to F2 and F3, the properties of the F0F1 remains poorly characterized. Here, we showed that F0F1 is essential for talin-induced activation of integrin αLβ2 (LFA-1). F0F1 has a high content of β-sheet secondary structure, and it tends to homodimerize that may provide stability against proteolysis and chaotrope induced unfolding.  相似文献   

5.
The activation of integrin adhesion receptors from low to high affinity in response to intracellular cues controls cell adhesion and signaling. Binding of the cytoskeletal protein talin to the beta3 integrin cytoplasmic tail is required for beta3 activation, and the integrin-binding PTB-like F3 domain of talin is sufficient to activate beta3 integrins. Here we report that, whereas the conserved talin-integrin interaction is also required for beta1 activation, and talin F3 binds beta1 and beta3 integrins with comparable affinity, expression of the talin F3 domain is not sufficient to activate beta1 integrins. beta1 integrin activation could, however, be detected following expression of larger talin fragments that included the N-terminal and F1 domains, and mutagenesis indicates that these domains cooperate with talin F3 to mediate beta1 activation. This effect is not due to increased affinity for the integrin beta tail and we hypothesize that the N-terminal domains function by targeting or orienting talin in such a way as to optimize the interaction with the integrin tail. Analysis of beta3 integrin activation indicates that inclusion of the N-terminal and F1 domains also enhances F3-mediated beta3 activation. Our results therefore reveal a role for the N-terminal and F1 domains of talin during integrin activation and highlight differences in talin-mediated activation of beta1 and beta3 integrins.  相似文献   

6.
Integrins are heterodimeric (αβ) cell surface receptors that are activated to a high affinity state by the formation of a complex involving the α/β integrin transmembrane helix dimer, the head domain of talin (a cytoplasmic protein that links integrins to actin), and the membrane. The talin head domain contains four sub-domains (F0, F1, F2 and F3) with a long cationic loop inserted in the F1 domain. Here, we model the binding and interactions of the complete talin head domain with a phospholipid bilayer, using multiscale molecular dynamics simulations. The role of the inserted F1 loop, which is missing from the crystal structure of the talin head, PDB:3IVF, is explored. The results show that the talin head domain binds to the membrane predominantly via cationic regions on the F2 and F3 subdomains and the F1 loop. Upon binding, the intact talin head adopts a novel V-shaped conformation which optimizes its interactions with the membrane. Simulations of the complex of talin with the integrin α/β TM helix dimer in a membrane, show how this complex promotes a rearrangement, and eventual dissociation of, the integrin α and β transmembrane helices. A model for the talin-mediated integrin activation is proposed which describes how the mutual interplay of interactions between transmembrane helices, the cytoplasmic talin protein, and the lipid bilayer promotes integrin inside-out activation.  相似文献   

7.
Heterodimeric integrin adhesion receptors regulate cell migration, survival and differentiation in metazoa by communicating signals bi‐directionally across the plasma membrane. Protein engineering and mutagenesis studies have suggested that the dissociation of a complex formed by the single‐pass transmembrane (TM) segments of the α and β subunits is central to these signalling events. Here, we report the structure of the integrin αIIbβ3 TM complex, structure‐based site‐directed mutagenesis and lipid embedding estimates to reveal the structural event that underlies the transition from associated to dissociated states, that is, TM signalling. The complex is stabilized by glycine‐packing mediated TM helix crossing within the extracellular membrane leaflet, and by unique hydrophobic and electrostatic bridges in the intracellular leaflet that mediate an unusual, asymmetric association of the 24‐ and 29‐residue αIIb and β3 TM helices. The structurally unique, highly conserved integrin αIIbβ3 TM complex rationalizes bi‐directional signalling and represents the first structure of a heterodimeric TM receptor complex.  相似文献   

8.
Integrin receptors are heterodimeric transmembrane receptors with critical functions in cell adhesion and migration, cell cycle progression, differentiation, apoptosis, and phagocytosis of apoptotic cells. Integrins are activated by intracellular signaling that alter the binding affinity for extracellular ligands, so-called inside to outside signaling. A common element for integrin activation involves binding of the cytoskeletal protein talin, via its FERM domain, to a highly conserved NPxY motif in the β chain cytoplasmic tails, which is involved in long-range conformation changes to the extracellular domain that impinges on ligand affinity. When the human beta-5 (β5) integrin cDNA was expressed in αv positive, β5 and β3 negative hamster CS-1 cells, it promoted NPxY-dependent adhesion to VTN-coated surfaces, phosphorylation of FAK, and concomitantly, β5 integrin-EGFP protein was recruited into talin and paxillin-containing focal adhesions. Expression of a NPxY destabilizing β5 mutant (Y750A) abrogated adhesion and β5-Y750A-EGFP was excluded from focal adhesions at the tips of stress fibers. Surprisingly, expression of β5 Y750A integrin had a potent gain-of-function effect on apoptotic cell phagocytosis, and further, a β5-Y750A-EGFP fusion integrin readily bound MFG-E8-coated 10 μm diameter microspheres developed as apoptotic cell mimetics. The critical sequences in β5 integrin were mapped to a YEMAS motif just proximal to the NPxY motif. Our studies suggest that the phagocytic function of β5 integrin is regulated by an unconventional NPxY-talin-independent activation signal and argue for the existence of molecular switches in the β5 cytoplasmic tail for adhesion and phagocytosis.  相似文献   

9.
The activation of heterodimeric (α/β) integrin transmembrane receptors by cytosolic protein talin is crucial for regulating diverse cell-adhesion-dependent processes, including blood coagulation, tissue remodeling, and cancer metastasis. This process is triggered by the coincident binding of N-terminal FERM (four-point-one-protein/ezrin/radixin/moesin) domain of talin (talin-FERM) to the inner membrane surface and integrin β cytoplasmic tail, but how these binding events are spatiotemporally regulated remains obscure. Here we report the crystal structure of a dormant talin, revealing how a C-terminal talin rod segment (talin-RS) self-masks a key integrin-binding site on talin-FERM via a large interface. Unexpectedly, the structure also reveals a distinct negatively charged surface on talin-RS that electrostatically hinders the talin-FERM binding to the membrane. Such a dual inhibitory topology for talin is consistent with the biochemical and functional data, but differs significantly from a previous model. We show that upon enrichment with phosphotidylinositol-4,5-bisphosphate (PIP2) – a known talin activator, membrane strongly attracts a positively charged surface on talin-FERM and simultaneously repels the negatively charged surface on talin-RS. Such an electrostatic “pull-push” process promotes the relief of the dual inhibition of talin-FERM, which differs from the classic “steric clash” model for conventional PIP2-induced FERM domain activation. These data therefore unravel a new type of membrane-dependent FERM domain regulation and illustrate how it mediates the talin on/off switches to regulate integrin transmembrane signaling and cell adhesion.  相似文献   

10.
Talin binding to integrin β tails increases ligand binding affinity (activation). Changes in β transmembrane domain (TMD) topology that disrupt α-β TMD interactions are proposed to mediate integrin activation. In this paper, we used membrane-embedded integrin β3 TMDs bearing environmentally sensitive fluorophores at inner or outer membrane water interfaces to monitor talin-induced β3 TMD motion in model membranes. Talin binding to the β3 cytoplasmic domain increased amino acid side chain embedding at the inner and outer borders of the β3 TMD, indicating altered topology of the β3 TMD. Talin's capacity to effect this change depended on its ability to bind to both the integrin β tail and the membrane. Introduction of a flexible hinge at the midpoint of the β3 TMD decoupled the talin-induced change in intracellular TMD topology from the extracellular side and blocked talin-induced activation of integrin αIIbβ3. Thus, we show that talin binding to the integrin β TMD alters the topology of the TMD, resulting in integrin activation.  相似文献   

11.
Transmembrane adhesion receptors, such as integrins, mediate cell adhesion by interacting with intracellular proteins that connect to the cytoskeleton. Talin, one such linker protein, is thought to have two roles: mediating inside-out activation of integrins, and connecting extracellular matrix (ECM)-bound integrins to the cytoskeleton. Talin's amino-terminal head, which consists of a FERM domain, binds an NPxY motif within the cytoplasmic tail of most integrin beta subunits. This is consistent with the role of FERM domains in recruiting other proteins to the plasma membrane. We tested the role of the talin-head-NPxY interaction in integrin function in Drosophila. We found that introduction of a mutation that perturbs this binding in vitro into the isolated talin head disrupts its recruitment by integrins in vivo. Surprisingly, when engineered into the full-length talin, this mutation did not disrupt talin recruitment by integrins nor its ability to connect integrins to the cytoskeleton. However, it reduced the ability of talin to strengthen integrin adhesion to the ECM, indicating that the function of the talin-head-NPxY interaction is solely to regulate integrin adhesion.  相似文献   

12.
The integrin family of heterodimeric cell adhesion molecules exists in both low- and high-affinity states, and integrin activation requires binding of the talin FERM (four-point-one, ezrin, radixin, moesin) domain to membrane-proximal sequences in the β-integrin cytoplasmic domain. However, it has recently become apparent that the kindlin family of FERM domain proteins is also essential for talin-induced integrin activation. FERM domains are typically composed of F1, F2, and F3 domains, but the talin FERM domain is atypical in that it contains a large insert in F1 and is preceded by a previously unrecognized domain, F0. Initial sequence alignments showed that the kindlin FERM domain was most similar to the talin FERM domain, but the homology appeared to be restricted to the F2 and F3 domains. Based on a detailed characterization of the talin FERM domain, we have reinvestigated the sequence relationship with kindlins and now show that kindlins do indeed contain the same domain structure as the talin FERM domain. However, the kindlin F1 domain contains an even larger insert than that in talin F1 that disrupts the sequence alignment. The insert, which varies in length between different kindlins, is not conserved and, as in talin, is largely unstructured. We have determined the structure of the kindlin-1 F0 domain by NMR, which shows that it adopts the same ubiquitin-like fold as the talin F0 and F1 domains. Comparison of the kindlin-1 and talin F0 domains identifies the probable interface with the kindlin-1 F1 domain. Potential sites of interaction of kindlin F0 with other proteins are discussed, including sites that differ between kindlin-1, kindlin-2, and kindlin-3. We also demonstrate that F0 is required for the ability of kindlin-1 to support talin-induced αIIbβ3 integrin activation and for the localization of kindlin-1 to focal adhesions.  相似文献   

13.
Integrins are heterodimeric membrane-spanning adhesion receptors that are essential for a wide range of biological functions. Control of integrin conformational states is required for bidirectional signalling across the membrane. Key components of this control mechanism are the transmembrane and cytoplasmic domains of the α and β subunits. These domains are believed to interact, holding the integrin in the inactive state, while inside-out integrin activation is accompanied by domain separation. Although there are strong indications for domain interactions, the majority of evidence is insufficient to precisely define the interaction interface. The current best model of the complex, derived from computational calculations with experimental restraints, suggests that integrin activation by the cytoplasmic protein talin is accomplished by steric disruption of the α/β interface. Better atomic-level resolution structures of the α/β transmembrane/cytoplasmic domain complex are still required for the resting state integrin to corroborate this. Integrin activation is also controlled by competitive interactions involving the cytoplasmic domains, particularly the β-tails. The concept of the β integrin tail as a focal adhesion interaction ‘hub’ for interactions and regulation is discussed. Current efforts to define the structure and affinity of the various complexes formed by integrin tails, and how these interactions are controlled, e.g. by phosphorylation and localization, are described.  相似文献   

14.
Goksoy E  Ma YQ  Wang X  Kong X  Perera D  Plow EF  Qin J 《Molecular cell》2008,31(1):124-133
Activation of heterodimeric (alpha/beta) integrin transmembrane receptors by the 270 kDa cytoskeletal protein talin is essential for many important cell adhesive and physiological responses. A key step in this process involves interaction of phosphotyrosine-binding (PTB) domain in the N-terminal head of talin (talin-H) with integrin beta membrane-proximal cytoplasmic tails (beta-MP-CTs). Compared to talin-H, intact talin exhibits low potency in inducing integrin activation. Using NMR spectroscopy, we show that the large C-terminal rod domain of talin (talin-R) interacts with talin-H and allosterically restrains talin in a closed conformation. We further demonstrate that talin-R specifically masks a region in talin-PTB where integrin beta-MP-CT binds and competes with it for binding to talin-PTB. The inhibitory interaction is disrupted by a constitutively activating mutation (M319A) or by phosphatidylinositol 4,5-bisphosphate, a known talin activator. These data define a distinct autoinhibition mechanism for talin and suggest how it controls integrin activation and cell adhesion.  相似文献   

15.
The phosphotyrosine binding-like domain of talin activates integrins   总被引:1,自引:0,他引:1  
Cellular regulation of the ligand binding affinity of integrin adhesion receptors (integrin activation) depends on the integrin beta cytoplasmic domains (tails). The head domain of talin binds to several integrin beta tails and activates integrins. This head domain contains a predicted FERM domain composed of three subdomains (F1, F2, and F3). An integrin-activating talin fragment was predicted to contain the F2 and F3 subdomains. Both isolated subdomains bound specifically to the integrin beta3 tail. However, talin F3 bound the beta3 tail with a 4-fold higher affinity than talin F2. Furthermore, expression of talin F3 (but not F2) in cells led to activation of integrin alpha(IIb)beta3. A molecular model of talin F3 indicated that it resembles a phosphotyrosine-binding (PTB) domain. PTB domains recognize peptide ligands containing beta turns, often formed by NPXY motifs. NPX(Y/F) motifs are highly conserved in integrin beta tails, and mutations that disrupt this motif interfere with both integrin activation and talin binding. Thus, integrin binding to talin resembles the interactions of PTB domains with peptide ligands. These resemblances suggest that the activation of integrins requires the presence of a beta turn at NPX(Y/F) motifs conserved in integrin beta cytoplasmic domains.  相似文献   

16.
Integrins are a family of heterodimeric cell adhesion receptors expressed on most cells and are involved in many cellular functions including phagocytosis, a process by which professional phagocytes recognise, bind and internalise foreign materials larger than 0.5 µm in diameter. An example of a phagocytic integrin receptor is αMβ2, and this review seeks to provide fresh insights into the current knowledge of this subject. Key areas that this review will emphasise include, the classical understanding of bi‐directional signalling to and from αMβ2 (aka inside‐out and outside‐in signalling, respectively). For inside‐out signalling, we will review the involvement of the small GTPase, Rap1, FERM‐containing proteins such as talin and kindlin‐3, some of the kinases, and the GEF, cytohesin‐1 and vasodilator‐stimulated phosphoprotein (VASP). We also summarise studies into outside‐in signalling, focussing on the roles of RhoA and RhoG, and activation of Rac1 through the complex comprising TIAM, 14‐3‐3 and β2. We will also consider non‐classical signalling processes, which include integrin clustering and membrane ruffling. Through this review, we hope to highlight the importance of αMβ2 signalling mechanisms and their relevance to other integrin‐mediated events.  相似文献   

17.
Kindlin-2 belongs to an emerging class of regulators for heterodimeric (α/β) integrin adhesion receptors. By binding to integrin β cytoplasmic tail via its C-terminal FERM-like domain, kindlin-2 promotes integrin activation. Intriguingly, this activation process depends on the N terminus of kindlin-2 (K2-N) that precedes the FERM domain. The molecular function of K2-N is unclear. We present the solution structure of K2-N, which displays a ubiquitin fold similar to that observed in kindlin-1. Using chemical shift mapping and mutagenesis, we found that K2-N contains a conserved positively charged surface that binds to membrane enriched with negatively charged phosphatidylinositol-(4,5)-bisphosphate. We show that while wild-type kindlin-2 is capable of promoting integrin activation, such ability is significantly reduced for its membrane-binding defective mutant. These data suggest a membrane-binding function of the ubiquitin-like domain of kindlin-2, which is likely common for all kindlins to promote their localization to the plasma membrane and control integrin activation.  相似文献   

18.
Both talin head domain and kindlin-2 interact with integrin β cytoplasmic tails, and they function in concert to induce integrin activation. Binding of talin head domain to β cytoplasmic tails has been characterized extensively, but information on the interaction of kindin-2 with this integrin segment is limited. In this study, we systematically examine the interactions of kindlin-2 with integrin β tails. Kindlin-2 interacted well with β(1) and β(3) tails but poorly with the β(2) cytoplasmic tail. This binding selectivity was determined by the non-conserved residues, primarily the three amino acids at the extreme C terminus of the β(3) tail, and the sequence in β(2) was non-permissive. The region at the C termini of integrin β(1) and β(3) tails recognized by kindlin-2 was a binding core of 12 amino acids. Kindlin-2 and talin head do not interact with one another but can bind simultaneously to the integrin β(3) tail without enhancing or inhibiting the interaction of the other binding partner. Kindlin-2 itself failed to directly unclasp integrin α/β tail complex, indicating that kindlin-2 must cooperate with talin to support the integrin activation mechanism.  相似文献   

19.
Integrins are heterodimeric cell adhesion molecules that are important in many biological functions, such as cell migration, proliferation, differentiation, and survival. They can transmit bi‐directional signals across the plasma membrane. Inside‐out activating signal from some cell surface receptors bound with soluble agonists triggers integrins conformational change leading to high affinity for extracellular ligands. Then binding of ligands to integrins results in outside‐in signaling, leading to formation of focal adhesion complex at the integrin cytoplasmic tail and activation of downstream signal pathways. This bi‐directional signaling is essential for rapid response of cell to surrounding environmental changes. During this process, the conformational change of integrin extracellular and transmembrane/cytoplasmic domains is particularly important. In this review, we will summarize recent progress in both inside‐out and outside‐in signaling with specific focus on the mechanism how integrins transmit bi‐directional signals through transmembrane/cytoplasmic domains. J. Cell. Physiol. 228: 306–312, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
The cytoskeletal protein talin activates integrin receptors by binding of its FERM domain to the cytoplasmic tail of β‐integrin. Talin also couples integrins to the actin cytoskeleton, largely by binding to and activating the cytoskeletal protein vinculin, which binds to F‐actin through the agency of its five‐helix bundle tail (Vt) domain. Talin activates vinculin by means of buried amphipathic α‐helices coined vinculin binding sites (VBSs) that reside within numerous four‐ and five‐helix bundle domains that comprise the central talin rod, which are released from their buried locales by means of mechanical tension on the integrin:talin complex. In turn, these VBSs bind to the N‐terminal seven‐helix bundle (Vh1) domain of vinculin, creating an entirely new helix bundle that severs its head‐tail interactions. Interestingly, talin harbors a second integrin binding site coined IBS2 that consists of two five‐helix bundle domains that also contain a VBS (VBS50). Here we report the crystal structure of VBS50 in complex with vinculin at 2.3 Å resolution and show that intramolecular interactions of VBS50 within IBS2 are much more extensive versus its interactions with vinculin. Indeed, the IBS2‐vinculin interaction only occurs at physiological temperature and the affinity of VBS50 for vinculin is about 30 times less than other VBSs. The data support a model where integrin binding destabilizes IBS2 to allow it to bind to vinculin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号